高精度光纖時(shí)間頻率一體化傳遞
doi: 10.11999/JEIT180807
-
1.
北京無(wú)線電計(jì)量測(cè)試研究所 ??北京 ??100854
-
2.
計(jì)量與校準(zhǔn)技術(shù)國(guó)家重點(diǎn)實(shí)驗(yàn)室 ??北京 ??100854
-
3.
中國(guó)航天科工集團(tuán)第二研究院 ??北京 ??100854
High Precision Time and Frequency Integration Transfer via Optical Fiber
-
1.
Beijing Institute of Radio Metrology and Measurement, Beijing 100854, China
-
2.
Science and Technology on Metrology and Calibration Laboratory, Beijing 100854, China
-
3.
The Second Academy of China Aerospace, Beijing 100854, China
-
摘要: 為滿足各工程應(yīng)用領(lǐng)域?qū)τ诟呔葧r(shí)間頻率同步的需求,降低系統(tǒng)復(fù)雜度,保障大規(guī)模光纖時(shí)頻傳遞網(wǎng)絡(luò)的順利建設(shè),該文提出基于偽碼調(diào)制技術(shù)的光纖時(shí)間頻率一體化傳遞方法,設(shè)計(jì)并搭建了光纖時(shí)間頻率一體化傳遞系統(tǒng),完成了光纖單向和雙向時(shí)頻一體化傳遞。在單向時(shí)頻傳遞試驗(yàn)中,分析了溫度變化對(duì)于系統(tǒng)傳輸時(shí)延的影響;在雙向時(shí)頻傳遞試驗(yàn)中,實(shí)現(xiàn)了時(shí)間頻率的高精度傳遞,系統(tǒng)附加時(shí)間傳遞抖動(dòng)為0.28 ps/s, 0.82 ps/1000 s,附加頻率傳遞不穩(wěn)定度為4.94×10–13/s, 6.39×10–17/40000 s。試驗(yàn)結(jié)果表明,該方法實(shí)現(xiàn)了時(shí)間、頻率一體化高精度同步,且系統(tǒng)附加時(shí)間傳遞抖動(dòng)優(yōu)于目前各光纖時(shí)間同步方案。
-
關(guān)鍵詞:
- 光纖 /
- 時(shí)間傳遞 /
- 頻率傳遞 /
- 偽碼調(diào)制
Abstract: To satisfy the demand of the high precision time and frequency synchronization for engineering application, to reduce system complexity and ensure the construction of large-scale optical fiber network for time and frequency transmission, a method of high precision time and frequency integration transfer via optical fiber based on pseudo-code modulation is developed. The optical fiber time and frequency transfer system is designed and built. The unidirectional and bidirectional time and frequency transfer test via optical fiber are completed. In the unidirectional time-frequency transfer test, the influence of temperature change on the transmission delay of the system is analyzed. In the bidirectional time-frequency transfer test, the system additional time transfer jitter is 0.28 ps/s, 0.82 ps/1000 s, the additional frequency transfer instability is 4.94×10–13/s, and 6.39×10–17/40000 s. The results show that the proposed method achieves high precision time and frequency integration synchronization, and the system additional time transfer jitter is better than the current optical fiber time synchronization schemes.-
Key words:
- Optical fiber /
- Time transfer /
- Frequency transfer /
- Pseudo-code modulation
-
表 1 光纖雙向傳遞實(shí)驗(yàn)結(jié)果與國(guó)際頂尖實(shí)驗(yàn)結(jié)果比對(duì)
方案 年份 傳輸距離(km) 時(shí)間同步穩(wěn)定度結(jié)果 頻率傳遞穩(wěn)定度結(jié)果 秒穩(wěn)定度(ps/s) 長(zhǎng)期穩(wěn)定度 秒穩(wěn)定度(/s) 長(zhǎng)期穩(wěn)定度 文獻(xiàn)[23] 2014 300 40 11 ps/86400 s — — 文獻(xiàn)[20] 2015 120 30 0.7 ps/1000 s — — 文獻(xiàn)[24] 2015 短光纖(米級(jí)) 0.3 20 fs/10000 s — — 文獻(xiàn)[16] 2010 204 — — 6×10–14 5×10–17/105 s 文獻(xiàn)[18] 2012 80 — — 7×10–15 5×10–19/86400 s 本文 2018 100 0.28 1.19 ps/10000 s 4.94×10–13 6.39×10–17/40000 s 下載: 導(dǎo)出CSV
-
HE Wei, LIAN Baowang, and YANG Qiong. Time synchronization system design and research in GPS/INS Integrated Navigation System on complex dynamic situation[C]. Proceedings of 2013 IEEE International Conference of IEEE Region 10 (TENCON 2013), Xi’an, China, 2013: 1–5. 曾濤, 殷丕磊, 楊小鵬, 等. 分布式全相參雷達(dá)系統(tǒng)時(shí)間與相位同步方案研究[J]. 雷達(dá)學(xué)報(bào), 2013, 2(1): 105–110. doi: 10.3724/SP.J.1300.2013.20104ZENG Tao, YIN Pilei, YANG Xiaopeng, et al. Time and phase synchronization for distributed aperture coherent radar[J]. Journal of Radars, 2013, 2(1): 105–110. doi: 10.3724/SP.J.1300.2013.20104 方立軍, 馬駿, 柳勇, 等. 一種大型分布式陣列雷達(dá)頻率與相位同步[J]. 雷達(dá)科學(xué)與技術(shù), 2017, 15(1): 85–88. doi: 10.3969/j.issn.1672-2337.2017.01.015FANG Lijun, MA Jun, LIU Yong, et al. Frequency and phase coherence in large distributed digital array radar[J]. Radar Science and Technology, 2017, 15(1): 85–88. doi: 10.3969/j.issn.1672-2337.2017.01.015 SCHILLER S, TINO G M, GILL P, et al. Einstein gravity explorer-a medium-class fundamental physics mission[J]. Experimental Astronomy, 2009, 23(2): 573–610. doi: 10.1007/s10686-008-9126-5 BONDARESCU R, BONDARESCU M, HETéNYI G, et al. Geophysical applicability of atomic clocks: Direct continental geoid mapping[J]. Geophysical Journal International, 2012, 191(1): 78–82. doi: 10.1111/j.1365-246X.2012.05636.x CALHOUN M, HUANG S, and TJOELKER R L. Stable photonic links for frequency and time transfer in the deep-space network and antenna arrays[J]. Proceedings of the IEEE, 2007, 95(10): 1931–1946. doi: 10.1109/JPROC.2007.905048 LEWANDOWSKI W, AZOUBIB J, and KLEPCZYNSKI W J. GPS: Primary tool for time transfer[J]. Proceedings of the IEEE, 1999, 87(1): 163–172. doi: 10.1109/5.736348 GUANG Wei, DONG Shaowu, WU Wenjun, et al. Progress of BeiDou time transfer at NTSC[J]. Metrologia, 2018, 55(2): 175–187. doi: 10.1088/1681-7575/aaa673 王學(xué)運(yùn), 趙博, 張升康, 等. 衛(wèi)星雙向時(shí)間頻率傳遞調(diào)制解調(diào)器研制進(jìn)展[J]. 宇航計(jì)測(cè)技術(shù), 2014, 34(5): 23–26. doi: 10.3969/j.issn.1000-7202.2014.05.006WANG Xueyun, ZHAO Bo, ZHANG Shengkang, et al. The progress of BIRMM two-way satellite time and frequency transfer modem[J]. Journal of Astronautic Metrology and Measurement, 2014, 34(5): 23–26. doi: 10.3969/j.issn.1000-7202.2014.05.006 王學(xué)運(yùn), 王海峰, 張升康, 等. 全新衛(wèi)星雙向時(shí)間比對(duì)調(diào)制解調(diào)器設(shè)計(jì)[J]. 電子學(xué)報(bào), 2017, 45(10): 2555–2560. doi: 10.3969/j.issn.0372-2112.2017.10.034WANG Xueyun, WANG Haifeng, ZHANG Shengkang, et al. Design of a new two-way satellite time and frequency transfer modem[J]. Acta Electronica Sinica, 2017, 45(10): 2555–2560. doi: 10.3969/j.issn.0372-2112.2017.10.034 DROSTE S, UDEM T, H?NSCH T W, et al. Optical frequency transfer over a single-span 1840-km fiber link[C]. Proceedings of the 2013 Joint European Frequency and Time Forum & International Frequency Control Symposium (EFTF/IFC), Prague, Czech Republic, 2013: 1004–1006. doi: 10.1109/EFTF-IFC.2013.6702150. 劉濤, 劉杰, 鄧雪, 等. 光纖時(shí)間頻率信號(hào)傳遞研究[J]. 時(shí)間頻率學(xué)報(bào), 2016, 39(3): 207–215. doi: 10.13875/j.issn.1674-0637.2016-03-0207-09LIU Tao, LIU Jie, DENG Xue, et al. Research on fiber-based time and frequency transfer[J]. Journal of Time and Frequency, 2016, 39(3): 207–215. doi: 10.13875/j.issn.1674-0637.2016-03-0207-09 MARRA G, SLAVIK R, MARGOLIS H S, et al. High-resolution microwave frequency transfer over an 86-km-long optical fiber network using a mode-locked laser[J]. Optics Letters, 2011, 36(4): 511–513. doi: 10.1364/OL.36.000511 LESSING M, MARGOLIS H S, BROWN C T A, et al. Frequency comb-based time transfer over a 159 km long installed fiber network[J]. Applied Physics Letters, 2017, 110(22): 221101. doi: 10.1063/1.4984144 KIM J, CHEN J, ZHANG Zhigang, et al. Long-term femtosecond timing link stabilization using a single-crystal balanced cross correlator[J]. Optics Letters, 2007, 32(9): 1044–1046. doi: 10.1364/OL.32.001044 FUJIEDA M, KUMAGAI M, and NAGANO S. Coherent microwave transfer over a 204-km telecom fiber link by a cascaded system[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57(1): 168–174. doi: 10.1109/TUFFC.2010.1394 LOPEZ O, KANJ A, POTTIE P E, et al. Simultaneous remote transfer of accurate timing and optical frequency over a public fiber network[J]. Applied Physics B, 2013, 110(1): 3–6. doi: 10.1007/s00340-012-5241-0 WANG Bo, GAO Cao, CHEN Weiliang, et al. Precise and continuous time and frequency synchronisation at the 5×10-19 accuracy level[J]. Scientific Reports, 2012, 2: 556. doi: 10.1038/srep00556 劉琴, 韓圣龍, 王家亮, 等. 采用級(jí)聯(lián)方式實(shí)現(xiàn)430 km高精度頻率傳遞[J]. 中國(guó)激光, 2016, 43(9): 0906001. doi: 10.3788/CJL201643.0906001LIU Qin, HAN Shenglong, WANG Jialiang, et al. High precise frequency transfer over a 430 km fiber backbone network using cascaded system[J]. Chinese Journal of Lasers, 2016, 43(9): 0906001. doi: 10.3788/CJL201643.0906001 CHEN Xing, LU Jinlong, CUI Yifan, et al. Simultaneously precise frequency transfer and time synchronization using feed-forward compensation technique via 120 km fiber link[J]. Scientific Reports, 2015, 5: 18343. doi: 10.1038/srep18343 BAI Yu, WANG Bo, GAO Cao, et al. Fiber-based multiple-access ultrastable radio and optical frequency dissemination[C]. Proceedings of the 2013 Joint European Frequency and Time Forum & International Frequency Control Symposium (EFTF/IFC), Prague, Czech Republic, 2013: 1014–1017. doi: 10.1109/EFTF-IFC.2013.6702187. SLAVIK R, MARRA G, FOKOUA E N, et al. Ultralow thermal sensitivity of phase and propagation delay in hollow core optical fibres[J]. Scientific Reports, 2015, 5: 15447. doi: 10.1038/srep15447 HU Liang, WU Guiling, ZHANG Hao, et al. A 300-kilometer optical fiber time transfer using bidirectional TDM dissemination[C]. Proceedings of the 46th Annual Precise Time and Time Interval Systems and Applications Meeting, Boston, USA, 2014: 41–44. KODET J, PáNEK P, and PROCHáZKA I. Two-way time transfer via optical fiber providing subpicosecond precision and high temperature stability[J]. Metrologia, 2016, 53(1): 18–26. doi: 10.1088/0026-1394/53/1/18 -