時(shí)空域聯(lián)合的水下未知線(xiàn)譜目標(biāo)檢測(cè)方法
doi: 10.11999/JEIT180796
-
1.
哈爾濱工程大學(xué)水聲技術(shù)重點(diǎn)實(shí)驗(yàn)室? ?哈爾濱? ?150001
-
2.
哈爾濱工程大學(xué)水聲工程學(xué)院? ?哈爾濱? ?150001
Detection of Unknown Line-spectrum Underwater Target Using Space-time Processing
-
1.
Acoustic Science and Technology Laboratory, Harbin Engineering University, Harbin 150001, China
-
2.
College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001, China
-
摘要: 水下線(xiàn)譜目標(biāo)被動(dòng)檢測(cè)中,目標(biāo)輻射線(xiàn)譜信號(hào)的方位、頻率、個(gè)數(shù)等信息通常未知,且線(xiàn)譜檢測(cè)性能容易受到寬帶干擾及背景噪聲的影響。針對(duì)此問(wèn)題,該文提出一種時(shí)空域聯(lián)合的未知線(xiàn)譜目標(biāo)檢測(cè)方法(STJD)。首先,利用線(xiàn)譜信號(hào)的相干特性,構(gòu)建了一種能夠自主匹配未知線(xiàn)譜信號(hào)的時(shí)空域聯(lián)合濾波器,用以濾除接收信號(hào)中的寬帶背景干擾及噪聲。之后,對(duì)濾波信號(hào)進(jìn)行常規(guī)頻域波束形成得到空時(shí)2維波束輸出,其具有相對(duì)純凈的線(xiàn)譜譜峰。在此基礎(chǔ)上提取線(xiàn)譜并利用線(xiàn)譜信息計(jì)算空間方位譜,進(jìn)而實(shí)現(xiàn)對(duì)線(xiàn)譜目標(biāo)的檢測(cè)。理論推導(dǎo)及仿真結(jié)果表明該文方法能夠?qū)ξ粗€(xiàn)譜信號(hào)進(jìn)行最小均方誤差意義下的時(shí)空濾波,并能充分地利用線(xiàn)譜信息進(jìn)行線(xiàn)譜目標(biāo)的被動(dòng)檢測(cè)。與已有基于線(xiàn)譜特征的線(xiàn)譜目標(biāo)檢測(cè)方法相比,該文方法對(duì)信噪比(SNR)的要求較低,在多目標(biāo)、多線(xiàn)譜等復(fù)雜情況下具有較好的線(xiàn)譜目標(biāo)檢測(cè)性能。
-
關(guān)鍵詞:
- 陣列信號(hào)處理 /
- 線(xiàn)譜檢測(cè) /
- 輻射噪聲 /
- 線(xiàn)譜增強(qiáng)器
Abstract: For the passive detection of underwater line-spectrum target, the information such as the azimuth, frequency and the number of the line-spectrum signals is usually unknown, and the line-spectrum detection performance is affected by broadband interferences and noise. For this issue, a Space-Time Joint Detecion (STJD) method of detecting the unknown line-spectrum target by space-time domain processing is proposed. Firstly, a space-time filter that autonomously matches the unknown line-spectrum signals is constructed to filter out the broadband interferences and noise. Secondly, the conventional frequency domain beamforming is performed on the filtered signals, and then a space-time two-dimensional beam output with relatively pure line-spectrum spectral peaks is obtained. The line-spectrum signals are extracted from the space-time two-dimensional beam output, and the spatial spectrum is calculated using the extracted line-spectrum information. Then, the detection of the line-spectrum target is realized. Theoretical derivation and simulation results verify that the proposed method performs the spatiotemporal filtering on the unknown line-spectrum signals in the minimum mean square error sense, and fully utilizes the line-spectrum information for the passive detection of underwater line-spectrum target. Compared with the existing line-spectrum target detection methods utilizing the line-spectrum features, the proposed method requires lower Signal to Noise Ratio (SNR), and has better detection performance under the complex multi-target multi-spectrum-line conditions. -
WITTEKIND D K. A simple model for the underwater noise source level of ships[J]. Journal of Ship Production and Design, 2014, 30(1): 7–14. doi: 10.5957/JSPD.30.1.120052 WANG Yilin, MA Shilong, FAN Zhan, et al. Robust DFT-based generalised likelihood ratio test for underwater tone detection[J]. IET Radar, Sonar & Navigation, 2017, 11(12): 1845–1853. doi: 10.1049/iet-rsn.2017.0135 羅斌, 王茂法, 王世闖. 一種高效的弱目標(biāo)線(xiàn)譜檢測(cè)算法[J]. 聲學(xué)技術(shù), 2017, 36(2): 171–176. doi: 10.16300/j.cnki.1000-3630.2017.02.013LUO Bin, WANG Maofa, and WANG Shichuang. A highly efficient weak target line-spectrum detection algorithm[J]. Technical Acoustics, 2017, 36(2): 171–176. doi: 10.16300/j.cnki.1000-3630.2017.02.013 陳志菲, 孫進(jìn)才, 侯宏. 寬帶DOA估計(jì)的類(lèi)MUSIC波束形成算法[J]. 電子學(xué)報(bào), 2011, 39(6): 1257–1260.CHEN Zhifei, SUN Jincai, and HOU Hong. MUSIC-like beamforming method for wideband DOA estimation[J]. Acta Electronica Sinica, 2011, 39(6): 1257–1260. 陳陽(yáng), 王自娟, 朱代柱, 等. 一種基于頻率方差加權(quán)的線(xiàn)譜目標(biāo)檢測(cè)方法[J]. 聲學(xué)學(xué)報(bào), 2010, 35(1): 76–80. doi: 10.15949/j.cnki.0371-0025.2010.01.008CHEN Yang, WANG Zijuan, ZHU Daizhu, et al. A detecting method for line-spectrum target based on variance-of-frequency weight[J]. Acta Acustica, 2010, 35(1): 76–80. doi: 10.15949/j.cnki.0371-0025.2010.01.008 戴文舒, 陳新華, 孫長(zhǎng)瑜, 等. 自適應(yīng)Alpha-beta修正的線(xiàn)譜檢測(cè)后置處理方法[J]. 電子與信息學(xué)報(bào), 2014, 36(10): 2419–2424.DAI Wenshu, CHEN Xinhua, SUN Changyu, et al. A post-processing method for line spectrum detection corrected by adaptive alpha-beta filter[J]. Journal of Electronics &Information Technology, 2014, 36(10): 2419–2424. 陳新華, 鮑習(xí)中, 李啟虎, 等. 水下聲信號(hào)未知頻率的目標(biāo)檢測(cè)方法研究[J]. 兵工學(xué)報(bào), 2012, 33(4): 471–175.CHEN Xinhua, BAO Xizhong, LI Qihu, et al. Research on detection of underwater acoustic signal with unknown frequency[J]. Acta Armamentarii, 2012, 33(4): 471–175. 鄭恩明, 陳新華, 孫長(zhǎng)瑜. 基于幅值加權(quán)的未知線(xiàn)譜目標(biāo)檢測(cè)方法[J]. 振動(dòng)與沖擊, 2014, 33(16): 160–164. doi: 10.13465/j.cnki.jvs.2014.16.029ZHENG Enming, CHEN Xinhua, and SUN Changyu. Unknown target detection method based on weighted amplitude[J]. Journal of Vibration and Shock, 2014, 33(16): 160–164. doi: 10.13465/j.cnki.jvs.2014.16.029 梁國(guó)龍, 趙文彬, 付進(jìn). 一種降維空域?yàn)V波矩陣的設(shè)計(jì)方法[J]. 電子學(xué)報(bào), 2017, 45(2): 417–423. doi: 10.3969/j.issn.0372-2112.2017.02.021LIANG Guolong, ZHAO Wenbin, and FU Jin. Spatial matrix filter with dimension reduction design[J]. Acta Electronica Sinica, 2017, 45(2): 417–423. doi: 10.3969/j.issn.0372-2112.2017.02.021 韓東, 章新華, 孫瑜. 寬帶最優(yōu)空域矩陣濾波器設(shè)計(jì)[J]. 聲學(xué)學(xué)報(bào), 2011, 36(4): 405–411. doi: 10.15949/j.cnki.0371-0025.2011.04.005HAN Dong, ZHANG Xinhua, and SUN Yu. Design of optimal broad band spatial matrix filter[J]. Acta Acustica, 2011, 36(4): 405–411. doi: 10.15949/j.cnki.0371-0025.2011.04.005 WIDROW B, GLOVER J R, MCCOOL J M, et al. Adaptive noise cancelling: Principles and applications[J]. Proceedings of the IEEE, 1975, 63(12): 1692–1716. doi: 10.1109/PROC.1975.10036 ZEIDLER J, SATORIUS E, CHABRIES D, et al. Adaptive enhancement of multiple sinusoids in uncorrelated noise[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1978, 26(3): 240–254. doi: 10.1109/TASSP.1978.1163074 RICKARD J and ZEIDLER J. Second-order output statistics of the adaptive line enhancer[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1979, 27(1): 31–39. doi: 10.1109/TASSP.1979.1163203 鄭兆寧, 向大威. 水聲信號(hào)被動(dòng)檢測(cè)與參數(shù)估計(jì)理論[M]. 北京: 科學(xué)出版社, 1983: 528–582.ZHENG Zhaoning and XIANG Dawei. Underwater Acoustic Signal Passive Detection and Parameter Estimation Theory[M]. Beijing: Science Press, 1983: 528–582. WEN Pengwei and ZHANG Jiashu. A novel variable step-size normalized subband adaptive filter based on mixed error cost function[J]. Signal Processing, 2017, 138: 48–52. doi: 10.1016/j.sigpro.2017.01.023 SHEN Zijie, HUANG Tianmin, and ZHOU Kun. L0-norm constraint normalized logarithmic subband adaptive filter algorithm[J]. Signal, Image and Video Processing, 2018, 12(5): 861–868. doi: 10.1007/s11760-017-1230-4 YU Yi, ZHAO Haiquan, and CHEN Badong. Set-membership improved normalised subband adaptive filter algorithms for acoustic echo cancellation[J]. IET Signal Processing, 2018, 12(1): 42–50. doi: 10.1049/iet-spr.2017.0131 -