一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于語(yǔ)音卷積稀疏遷移學(xué)習(xí)和并行優(yōu)選的帕金森病分類算法研究

張小恒 李勇明 王品 曾孝平 顏芳 張艷玲 承歐梅

張小恒, 李勇明, 王品, 曾孝平, 顏芳, 張艷玲, 承歐梅. 基于語(yǔ)音卷積稀疏遷移學(xué)習(xí)和并行優(yōu)選的帕金森病分類算法研究[J]. 電子與信息學(xué)報(bào), 2019, 41(7): 1641-1649. doi: 10.11999/JEIT180792
引用本文: 張小恒, 李勇明, 王品, 曾孝平, 顏芳, 張艷玲, 承歐梅. 基于語(yǔ)音卷積稀疏遷移學(xué)習(xí)和并行優(yōu)選的帕金森病分類算法研究[J]. 電子與信息學(xué)報(bào), 2019, 41(7): 1641-1649. doi: 10.11999/JEIT180792
Xiaoheng ZHANG, Yongming LI, Pin WANG, Xiaoping ZENG, Fang YAN, Yanling ZHANG, Oumei CHENG. Classification Algorithm of Parkinson’s Disease Based on Convolutional Sparse Transfer Learning and Sample/Feature Parallel Selection[J]. Journal of Electronics & Information Technology, 2019, 41(7): 1641-1649. doi: 10.11999/JEIT180792
Citation: Xiaoheng ZHANG, Yongming LI, Pin WANG, Xiaoping ZENG, Fang YAN, Yanling ZHANG, Oumei CHENG. Classification Algorithm of Parkinson’s Disease Based on Convolutional Sparse Transfer Learning and Sample/Feature Parallel Selection[J]. Journal of Electronics & Information Technology, 2019, 41(7): 1641-1649. doi: 10.11999/JEIT180792

基于語(yǔ)音卷積稀疏遷移學(xué)習(xí)和并行優(yōu)選的帕金森病分類算法研究

doi: 10.11999/JEIT180792
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(61771080, 61571069),重慶市基礎(chǔ)與前沿研究項(xiàng)目(cstc2018jcyjAX0779, cstc2016jcyjA0043, cstc2016jcyjA0064, cstc2016jcyjA0134),重慶市教育委員會(huì)科學(xué)技術(shù)研究項(xiàng)目(KJ1603805),西南醫(yī)院聯(lián)合孵化項(xiàng)目(SWH2016LHYS-11),模式識(shí)別國(guó)家重點(diǎn)實(shí)驗(yàn)室開放課題基金(201800011)
詳細(xì)信息
    作者簡(jiǎn)介:

    張小恒:男,1980年生,副教授,工程師,研究方向?yàn)槿斯ぶ悄?、生物醫(yī)學(xué)信號(hào)與信息處理

    李勇明:男,1976年生,教授,博士生導(dǎo)師,研究方向?yàn)槿斯ぶ悄堋⑸镝t(yī)學(xué)信號(hào)信息處理

    王品:女,1979年生,副教授,碩士生導(dǎo)師,研究方向?yàn)槿斯ぶ悄?、生物醫(yī)學(xué)信號(hào)信息處理

    曾孝平:男,1956年生,教授,博士生導(dǎo)師,研究方向?yàn)槿斯ぶ悄堋⑿盘?hào)與信息處理

    顏芳:男,1979年生,副教授,碩士生導(dǎo)師,研究方向?yàn)樯镝t(yī)學(xué)信號(hào)信息處理

    張艷玲:女,1974年生,教授,碩士生導(dǎo)師,研究方向?yàn)榕两鹕≡\療、生物醫(yī)學(xué)信號(hào)信息處理

    承歐梅:女,1968年生,教授,博士生導(dǎo)師,研究方向?yàn)榕两鹕≡\療、生物醫(yī)學(xué)信號(hào)信息處理

    通訊作者:

    李勇明 yongmingli@cqu.edu.cn

  • 中圖分類號(hào): TP391.42; R749

Classification Algorithm of Parkinson’s Disease Based on Convolutional Sparse Transfer Learning and Sample/Feature Parallel Selection

Funds: The National Natural Science Foundation of China (61771080, 61571069), The Chongqing Research Program of Basic Research and Frontier Technology(cstc2018jcyjAX0779, cstc2016jcyjA0043, cstc2016jcyjA0064, cstc2016jcyjA0134), The Chongqing Education Commission Science and Technology Research Program (KJ1603805), The Southwest Hospital Science and Technology Innovation Program (SWH2016LHYS-11), The Open Project Program of the National Laboratory of Pattern Recognition (201800011)
  • 摘要: 基于語(yǔ)音數(shù)據(jù)分析的帕金森病(PD)診斷存在樣本量小、訓(xùn)練與測(cè)試數(shù)據(jù)分布差異明顯的問題。為了解決這些問題,需要從降維和樣本擴(kuò)充兩個(gè)方面同時(shí)進(jìn)行。因此,該文提出結(jié)合加噪加權(quán)卷積稀疏遷移學(xué)習(xí)和樣本特征并行優(yōu)選的PD分類算法。該算法可從源域的公共語(yǔ)音庫(kù)中學(xué)習(xí)有利于表達(dá)PD語(yǔ)音特征的有效結(jié)構(gòu)信息,同時(shí)完成降維和樣本間接擴(kuò)充。樣本特征并行優(yōu)選考慮到了樣本和語(yǔ)音特征間的關(guān)系,從而有助于獲取高質(zhì)量的特征。首先,對(duì)公共語(yǔ)音庫(kù)進(jìn)行特征提取構(gòu)造公共特征庫(kù);然后,以公共特征庫(kù)對(duì)PD目標(biāo)域的訓(xùn)練數(shù)據(jù)集及測(cè)試數(shù)據(jù)集進(jìn)行稀疏編碼,這里分別采用傳統(tǒng)稀疏編碼(SC)與卷積稀疏編碼(CSC)兩種稀疏編碼方法;接著,對(duì)編碼后的語(yǔ)音樣本段和特征數(shù)據(jù)進(jìn)行同時(shí)優(yōu)選;最后,采用支撐向量機(jī)(SVM)進(jìn)行分類。實(shí)驗(yàn)結(jié)果表明,該算法針對(duì)受試者的分類準(zhǔn)確率最高值達(dá)到了95.0%,均值達(dá)到了86.0%,較相關(guān)被比較算法有較大提高。此外,研究還發(fā)現(xiàn),相較于傳統(tǒng)稀疏編碼方法,卷積稀疏編碼更有利于提取PD語(yǔ)音數(shù)據(jù)的高層特征;同樣,遷移學(xué)習(xí)也有利于提高該算法性能。
  • 圖  1  本文算法使用遷移學(xué)習(xí)前后的平均分類準(zhǔn)確率比較

    圖  2  本文算法使用遷移學(xué)習(xí)前后的ROC曲線比較

    表  1  基于語(yǔ)音卷積稀疏遷移學(xué)習(xí)和并行優(yōu)選的PD分類算法

     輸入:公共數(shù)據(jù)集${\text{S}}$,目標(biāo)領(lǐng)域數(shù)據(jù)集${\text{A}}$,樣本總數(shù)H,每個(gè)樣
    本的特征數(shù)N,受試者數(shù)M
     輸出:分類準(zhǔn)確率,靈敏度,特異度
     步驟:
       (1)對(duì)公共數(shù)據(jù)集${\text{S}}$疊加不同類型不同信噪比的噪聲擴(kuò)展其為
    集合${\text{S}}'$;
       (2)根據(jù)式(1),對(duì)集合${\text{S}}'$的語(yǔ)音樣本提取特征構(gòu)造特征庫(kù)即
    源領(lǐng)域數(shù)據(jù)集${\text{Y}}$;
       (3)根據(jù)2.2.2節(jié)及2.2.3節(jié),提取特征庫(kù)${\text{Y}}$的字典(稀疏編
    碼),卷積核(卷積稀疏編碼);
       (4)根據(jù)1.2.4節(jié),計(jì)算目標(biāo)領(lǐng)域數(shù)據(jù)集${\text{A}}$的稀疏表達(dá)系數(shù)矩
    陣${\text{E}}$(稀疏編碼)或特征圖矩陣${\text{E}}$(卷積稀疏編碼);
       (5)根據(jù)語(yǔ)音樣本特征并行優(yōu)選算法,將特征矩陣${\text{E}}$進(jìn)行特征
    擴(kuò)展為${\text{G}}$并歸一化為${\text{G}}'$,并進(jìn)行樣本特征同時(shí)優(yōu)選得矩陣${\text{P}}$;
       (6)基于SVM分類器進(jìn)行受試者留一法(LOSO)分類計(jì)算。
    下載: 導(dǎo)出CSV

    表  2  各種算法分類結(jié)果對(duì)比(%)

    分類算法基于受試者的留一法
    準(zhǔn)確率靈敏度特異度
    SVM(線性核函數(shù))
    平均65.065.065.0
    最好65.065.065.0
    SVM(徑向基核函數(shù))
    平均67.580.055.0
    最好67.580.055.0
    文獻(xiàn)[6]算法
    平均52.055.049.0
    最好85.085.090.0
    DBN算法
    平均54.652.456.8
    最好57.056.058.0
    CNN算法
    平均60.063.057.0
    最好65.061.069.0
    autoencoder+SVM(TL)
    平均72.575.070.0
    最好72.575.070.0
    autoencoder+SVM
    平均67.565.070.0
    最好67.565.070.0
    DBN+SVM(TL)
    平均55.560.051.0
    最好60.065.055.0
    DBN+SVM
    平均50.553.048.0
    最好57.565.050.0
    PD_SC&S2
    平均68.569.567.5
    最好90.085.095.0
    PD_SC&S2_TL
    平均81.079.582.5
    平均92.595.090.0
    PD_CSC&S2
    平均70.073.067.0
    最好75.074.076.0
    PD_CSC&S2_TL
    平均86.091.081.0
    最好95.0100.090.0
    下載: 導(dǎo)出CSV
  • BENGE J F, ROBERTS R L, KEKECS Z, et al. Brief report: knowledge of, interest in, and willingness to try behavioral interventions in individuals with Parkinson's disease[J]. Advances in Mind-Body Medicine, 2018, 32(1): 8–12.
    PLOUVIER A O A, OLDE HARTMAN T C, VAN LITSENBURG A, et al. Being in control of Parkinson's disease: a qualitative study of community-dwelling patients' coping with changes in care[J]. European Journal of General Practice, 2018, 24(1): 138–145. doi: 10.1080/13814788.2018.1447561
    CHIU Y F and FORREST K. The impact of lexical characteristics and noise on intelligibility of Parkinsonian speech[J]. Journal of Speech, Language, and Hearing Research, 2018, 61(4): 837–846. doi: 10.1044/2017_JSLHR-S-17-0205
    LITTLE M A, MCSHARRY P E, HUNTER E J, et al. Suitability of dysphonia measurements for telemonitoring of Parkinson's disease[J]. IEEE Transactions on Biomedical Engineering, 2009, 56(4): 1015–1022. doi: 10.1109/TBME.2008.2005954
    TSANAS A, LITTLE M A, MCSHARRY P E, et al. Novel speech signal processing algorithms for high-accuracy classification of Parkinson's disease[J]. IEEE Transactions on Biomedical Engineering, 2012, 59(5): 1264–1271. doi: 10.1109/TBME.2012.2183367
    SAKAR B E, ISENKUL M E, SAKAR C O, et al. Collection and analysis of a Parkinson speech dataset with multiple types of sound recordings[J]. IEEE Journal of Biomedical and Health Informatics, 2013, 17(4): 828–834. doi: 10.1109/JBHI.2013.2245674
    GODINO-LLORENTE J I, SHATTUCK-HUFNAGEL S, CHOI J Y, et al. Towards the identification of idiopathic Parkinson's disease from the speech. New articulatory kinetic biomarkers[J]. PLOS One, 2017, 12(12): e0189583. doi: 10.1371/journal.pone.0189583
    KAYA M and BILGE H ?. Classification of Parkinson speech data by metric learning[C]. Proceedings of the 2017 International Artificial Intelligence and Data Processing Symposium, Malatya, Turkey, 2017: 1–5.
    JI Wei and LI Yun. Stable dysphonia measures selection for Parkinson speech rehabilitation via diversity regularized ensemble[C]. International Conference on Acoustics, Speech and Signal Processing, Shanghai, China, 2016: 2264–2268. doi: 10.1109/ICASSP.2016.7472080.
    KIM J, NASIR M, GUPTA R, et al. Automatic estimation of Parkinson's disease severity from diverse speech tasks[C]. Proceedings of the 16th Annual Conference of the International Speech Communication Association, Dresden, Germany, 2015: 914–918.
    SHAHBAKHTI M, TAHERIFAR D, and SOROURI A. Linear and non-linear speech features for detection of Parkinson's disease[C]. Proceedings of the 6th 2013 Biomedical Engineering International Conference, Amphur Muang, Thailand, 2013: 1–3. doi: 10.1109/BMEiCon.2013.6687667.
    DUBEY H, GOLDBERG J C, ABTAHI M, et al. EchoWear: Smartwatch technology for voice and speech treatments of patients with Parkinson's disease[C]. Proceedings of the Conference on Wireless Health, Bethesda, USA, 2015: Article No.15. doi: 10.1145/2811780.2811957.
    ARIAS-VERGARA T, VASQUEZ-CORREA J C, OROZCO-ARROYAVE J R, et al. Parkinson's disease progression assessment from speech using GMM-UBM[C]. Conference of the International Speech Communication Association, San Francisco, USA, 2016: 1933–1937. doi: 10.21437/Interspeech.2016-1122.
    GEMAN O. Data processing for Parkinson's disease: Tremor, speech and gait signal analysis[C]. Proceedings of the 2011 E-Health and Bioengineering Conference, Iasi, Romania, 2011: 1–4.
    李勇明, 楊劉洋, 劉玉川, 等. 基于語(yǔ)音樣本重復(fù)剪輯和隨機(jī)森林的帕金森病診斷算法研究[J]. 生物醫(yī)學(xué)工程學(xué)雜志, 2016, 33(6): 1053–1059.

    LI Yongming, YANG Liuyang, LIU Yuchuan, et al. Research on diagnosis algorithm of Parkinson's disease based on speech sample multi-edit and random forest[J]. Journal of Biomedical Engineering, 2016, 33(6): 1053–1059.
    張小恒, 王力銳, 曹垚, 等. 混合語(yǔ)音段特征雙邊式優(yōu)選算法用于帕金森病分類研究[J]. 生物醫(yī)學(xué)工程學(xué)雜志, 2017, 34(6): 942–948. doi: 10.7507/1001-5515.201704061

    ZHANG Xiaoheng, WANG Lirui, CAO Yao, et al. Combining speech sample and feature bilateral selection algorithm for classification of Parkinson's disease[J]. Journal of Biomedical Engineering, 2017, 34(6): 942–948. doi: 10.7507/1001-5515.201704061
    SHARMA P, ABROL V, DILEEP A D, et al. Sparse coding based features for speech units classification[J]. Computer Speech & Language, 2018, 47: 333–350. doi: 10.1016/j.csl.2017.08.004
    ZHOU Haotian, ZHUANG Yin, CHEN Liang, et al. Ship Detection in Optical Satellite Images Based on Sparse Representation[M]. Singapore: Springer, 2018: 164–171. doi: 10.1007/978-981-10-7521-6_20.
    LI Jinming. Sparse representation based single image super-resolution with low-rank constraint and nonlocal self-similarity[J]. Multimedia Tools and Applications, 2018, 77(2): 1693–1714. doi: 10.1007/s11042-017-4399-1
    LEE H, BATTLE A, RAINA R, et al. Efficient sparse coding algorithms[C]. Proceedings of the 19th International Conference on Neural Information Processing Systems, Canada, 2006: 801–808.
    CHANG Hang, HAN Ju, ZHONG Cheng, et al. Unsupervised transfer learning via multi-scale convolutional sparse coding for biomedical applications[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(5): 1182–1194. doi: 10.1109/TPAMI.2017.2656884
    ZHANG He and PATEL V M. Convolutional sparse and low-rank coding-based image decomposition[J]. IEEE Transactions on Image Processing, 2018, 27(5): 2121–2133. doi: 10.1109/TIP.2017.2786469
    HU Xuemei, HEIDE F, DAI Qionghai, et al. Convolutional sparse coding for RGB+NIR imaging[J]. IEEE Transactions on Image Processing, 2018, 27(4): 1611–1625. doi: 10.1109/TIP.2017.2781303
    WOHLBERG B. Efficient algorithms for convolutional sparse representations[J]. IEEE Transactions on Image Processing, 2016, 25(1): 301–315. doi: 10.1109/TIP.2015.2495260
    PERKINS S and THEILER J. Online feature selection using grafting[C]. Proceedings of the Twentieth International Conference on Machine Learning, Washington DC, USA, 2003: 592–599.
    BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends ? in Machine Learning, 2011, 3(1): 1–122. doi: 10.1561/2200000016
    EMADI M, MIANDJI E, and UNGER J. OMP-based DOA estimation performance analysis[J]. Digital Signal Processing, 2018, 79: 57–65. doi: 10.1016/j.dsp.2018.04.006
    ?OREL M and ?ROUBEK F. Fast convolutional sparse coding using matrix inversion lemma[J]. Digital Signal Processing, 2016, 55: 44–51. doi: 10.1016/j.dsp.2016.04.012
  • 加載中
圖(2) / 表(2)
計(jì)量
  • 文章訪問數(shù):  2044
  • HTML全文瀏覽量:  730
  • PDF下載量:  84
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2018-08-09
  • 修回日期:  2019-01-28
  • 網(wǎng)絡(luò)出版日期:  2019-02-23
  • 刊出日期:  2019-07-01

目錄

    /

    返回文章
    返回