一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

改進(jìn)多元宇宙算法求解大規(guī)模實(shí)值優(yōu)化問題

劉小龍

劉小龍. 改進(jìn)多元宇宙算法求解大規(guī)模實(shí)值優(yōu)化問題[J]. 電子與信息學(xué)報(bào), 2019, 41(7): 1666-1673. doi: 10.11999/JEIT180751
引用本文: 劉小龍. 改進(jìn)多元宇宙算法求解大規(guī)模實(shí)值優(yōu)化問題[J]. 電子與信息學(xué)報(bào), 2019, 41(7): 1666-1673. doi: 10.11999/JEIT180751
Xiaolong LIU. Application of Improved Multiverse Algorithm to Large Scale Optimization Problems[J]. Journal of Electronics & Information Technology, 2019, 41(7): 1666-1673. doi: 10.11999/JEIT180751
Citation: Xiaolong LIU. Application of Improved Multiverse Algorithm to Large Scale Optimization Problems[J]. Journal of Electronics & Information Technology, 2019, 41(7): 1666-1673. doi: 10.11999/JEIT180751

改進(jìn)多元宇宙算法求解大規(guī)模實(shí)值優(yōu)化問題

doi: 10.11999/JEIT180751
基金項(xiàng)目: 國家自然科學(xué)基金(71471065, 71571072, 71771091),廣州社科聯(lián)基金(2018GZGJ02)
詳細(xì)信息
    作者簡介:

    劉小龍:男,1977年生,講師,研究方向?yàn)榉律鷥?yōu)化與計(jì)算智能

    通訊作者:

    劉小龍 xlliu@scut.edu.cn

  • 中圖分類號(hào): TP301.6

Application of Improved Multiverse Algorithm to Large Scale Optimization Problems

Funds: The National Natural Science Foundation of China (71471065, 71571072, 71771091), Guangzhou Social Science Federation Fund (2018GZGJ02)
  • 摘要: 針對(duì)多元宇宙優(yōu)化(MVO)算法中蟲洞存在機(jī)制、白洞選擇機(jī)制等不足,該文提出一種改進(jìn)多元宇宙優(yōu)化算法(IMVO)。設(shè)計(jì)固定概率的蟲洞存在機(jī)制和前期快速收斂后期平緩收斂的蟲洞旅行距離率,加快算法全局探索能力和快速迭代能力;提出黑洞的隨機(jī)白洞選擇機(jī)制,設(shè)計(jì)黑洞圍繞白洞恒星進(jìn)行公轉(zhuǎn)并模型化,解決代間宇宙信息溝通的問題,中低維度數(shù)值比較實(shí)驗(yàn)驗(yàn)證了改進(jìn)算法的優(yōu)良性能。選取大規(guī)模實(shí)值問題較難優(yōu)化的3個(gè)基準(zhǔn)測(cè)試函數(shù)進(jìn)行對(duì)比實(shí)驗(yàn),改進(jìn)算法在大規(guī)模優(yōu)化問題上的求解精度和成功率方面具有較好的適用性和魯棒性。
  • 圖  1  多元宇宙算法內(nèi)部主循環(huán)結(jié)構(gòu)

    圖  2  黑洞圍繞白洞螺旋式公轉(zhuǎn)

    表  1  文獻(xiàn)[10]的時(shí)間復(fù)雜度

    操作計(jì)算復(fù)雜度循環(huán)次數(shù)
    初始化O(N)D
    計(jì)算宇宙膨脹率O(N)L×D
    排序/標(biāo)準(zhǔn)化宇宙O(N)L×D
    黑白洞換維度O(K)L×D
    穿越選擇O((1–K)WEP)L×D
    參數(shù)更新O(1)L
    下載: 導(dǎo)出CSV

    表  2  本文的時(shí)間復(fù)雜度

    操作計(jì)算復(fù)雜度循環(huán)次數(shù)
    初始化O(N)D
    計(jì)算宇宙膨脹率O(N)L×D
    黑白洞選擇O(N)L×D
    策略1:穿越O(N/2)L×D
    策略2:公轉(zhuǎn)O(N/2)L×D
    參數(shù)更新O(1)L
    下載: 導(dǎo)出CSV

    表  3  單峰基準(zhǔn)測(cè)試函數(shù)的50維對(duì)比實(shí)驗(yàn)

    算法均值標(biāo)準(zhǔn)差成功率(%)
    f1 文獻(xiàn)[10] 2.08583 0.648651 0
    本文 4.64e-21 9.90e-21 100
    f2 文獻(xiàn)[10] 15.92479 44.7459 0
    本文 4.04e-11 3.86e-11 100
    f5 文獻(xiàn)[10] 1272.13 1479.477 0
    本文 6.70e-20 1.77e-19 100
    f7 文獻(xiàn)[10] 0.051991 0.029606 100
    本文 3.08e-04 3.91e-04 100
    下載: 導(dǎo)出CSV

    表  4  多峰基準(zhǔn)測(cè)試函數(shù)的50維對(duì)比實(shí)驗(yàn)

    算法均值標(biāo)準(zhǔn)差成功率(%)
    f9 文獻(xiàn)[10] 118.046 39.34364 0
    本文 0 0 100
    f10 文獻(xiàn)[10] 4.074904 5.501546 0
    本文 8.71e-12 5.66e-12 100
    f11 文獻(xiàn)[10] 0.938733 0.059535 100
    本文 0 0 100
    f12 文獻(xiàn)[10] 2.459953 0.791886 0
    本文 1.83e-23 3.51e-23 100
    下載: 導(dǎo)出CSV

    表  5  基準(zhǔn)測(cè)試函數(shù)30維度的算法對(duì)比實(shí)驗(yàn)

    f1f2f5f7f9f10f11f12
    文獻(xiàn)[6] 均值 6.54e-125 2.15e-73 27.27950 2.42e04 0 3.02e-15 0 0.087646
    標(biāo)準(zhǔn)差 6.80e-125 3.64e-73 0.215438 4.41e-04 0 1.95e-15 0 0.011997
    本文 均值 5.24e-21 1.86e-11 2.46e-20 3.41e-04 0 5.51e-12 0 1.14e-23
    標(biāo)準(zhǔn)差 1.96e-20 1.37e-11 4.03e-20 3.23e-04 0 6.56e-12 0 1.90e-23
    下載: 導(dǎo)出CSV

    表  6  基準(zhǔn)測(cè)試函數(shù)10維度的算法對(duì)比實(shí)驗(yàn)

    函數(shù)算法DA[18]CSA[17]MVO[10]IMVO[11]本文
    f10 均值 2.28 1.07 8.06e-02 4.27e-05 9.66e-12
    標(biāo)準(zhǔn)差 1.13 0.921 2.04e-01 2.22e-05 8.08e-12
    最差值 4.20 3.02 1.16 1.04e-04 7.76e-11
    最好值 4.44e-15 1.75e-03 1.17e-02 7.08e-06 3.67e-13
    f12 均值 9.78e-01 3.83e-01 1.07e-02 1.25e-10 4.32e-23
    標(biāo)準(zhǔn)差 8.58e-01 6.07e-01 5.70e-02 1.18e-10 1.06e-22
    最差值 3.49 3.20 3.12e-01 4.45e-10 4.71e-22
    最好值 4.84e-03 5.67e-05 9.21e-05 7.76e-12 9.15e-27
    下載: 導(dǎo)出CSV

    表  7  本文IMVO算法和文獻(xiàn)[6,10]中WOA, IWOA對(duì)較大規(guī)模單峰和多峰函數(shù)尋優(yōu)對(duì)比

    F對(duì)比算法D=200 D=500
    均值標(biāo)準(zhǔn)差成功率(%)均值標(biāo)準(zhǔn)差成功率(%)
    f2 文獻(xiàn)[10] 7.50e-51 9.40e-51 100 1.10e-49 2.10e-49 100
    文獻(xiàn)[6] 1.60e-67 1.90e-67 100 5.30e-66 9.60e-66 100
    本文 1.59e-10 1.43e-10 100 2.56e-10 2.41e-10 100
    f5 文獻(xiàn)[10] 1.98e+02 2.22e-01 0 4.96e02 4.66e-01 0
    文獻(xiàn)[6] 1.98e+02 5.43e-02 0 4.96e02 3.78e-01 0
    本文 6.13e-20 1.29e-19 100 3.48e-19 4.15e-19 100
    f10 文獻(xiàn)[10] 5.15e-15 1.94e-15 100 5.86e-15 2.97e-15 100
    文獻(xiàn)[6] 8.88e-16 0 100 4.44e-15 0 100
    本文 7.16e-12 6.87e-12 100 6.49e-12 1.13e-11 100
    f12 文獻(xiàn)[10] 8.09e-02 4.05e-02 0 9.19e-02 5.92e-02 0
    文獻(xiàn)[6] 2.02e-02 2.75e-02 0 8.30e-02 3.17e-02 0
    本文 5.09e-24 8.06e-24 100 4.25e-24 9.01e-24 100
    下載: 導(dǎo)出CSV

    表  8  求解不同規(guī)模f2f10函數(shù)的優(yōu)化均值對(duì)比

    維度Df2均值 f10均值
    文獻(xiàn)[10]文獻(xiàn)[6]本文文獻(xiàn)[10]文獻(xiàn)[6]本文
    30 1.00e-21 2.20e-73 1.86e-11 7.40 3.02e-15 5.51e-12
    200 7.50e-51 1.60e-67 1.59e-10 5.15e-15 8.88e-16 7.16e-12
    500 1.10e-49 5.30e-66 2.56e-10 5.86e-15 4.44e-15 6.49e-12
    下載: 導(dǎo)出CSV

    表  9  改進(jìn)算法的大規(guī)模實(shí)值優(yōu)化結(jié)果(閾值為1)

    F對(duì)比算法D=1000 D=2000
    均值標(biāo)準(zhǔn)差成功率(%)均值標(biāo)準(zhǔn)差成功率(%)
    f5 文獻(xiàn)[10] 8.70e+08 7.81e+07 0 7.11e+09 3.23e+08 0
    本文 2.05e-19 3.42e-19 100 5.62e-19 1.37e-18 100
    f7 文獻(xiàn)[10] 1.08e+04 8.35e+02 0 1.81e+05 9.44e+03 0
    本文 2.52e-04 3.99e-04 100 2.70e-04 3.87e-04 100
    f9 文獻(xiàn)[10] 1.37e+04 3.36e+02 0 3.04e+04 3.28e+02 0
    本文 0 0 100 0 0 100
    下載: 導(dǎo)出CSV
  • MAHDAVI S, RAHNAMAYAN S, and SHIRI M E. Multilevel framework for large-scale global optimization[J]. Soft Computing, 2017, 21(14): 4111–4140. doi: 10.1007/s00500-016-2060-y
    BOLUFé-R?HLER A, FIOL-GONZáLEZ S, and CHEN S. A minimum population search hybrid for large scale global optimization[C]. Proceedings of 2015 IEEE Congress on Evolutionary Computation, Sendai, Japan, 2015: 1958–1965. doi: 10.1109/CEC.2015.7257125.
    梁靜, 劉睿, 于坤杰, 等. 求解大規(guī)模問題協(xié)同進(jìn)化動(dòng)態(tài)粒子群優(yōu)化算法[J]. 軟件學(xué)報(bào), 2018, 29(9): 2595–2605. doi: 10.13328/j.cnki.jos.005398

    LIANG Jing, LIU Rui, YU Kunjie, et al. Dynamic multi-swarm particle swarm optimization with cooperative coevolution for large scale global optimization[J]. Journal of Software, 2018, 29(9): 2595–2605. doi: 10.13328/j.cnki.jos.005398
    羅家祥, 倪曉曄, 胡躍明. 融合多種搜索策略的差分進(jìn)化大規(guī)模優(yōu)化算法[J]. 華南理工大學(xué)學(xué)報(bào): 自然科學(xué)版, 2017, 45(3): 97–103. doi: 10.3969/j.issn.1000-565X.2017.03.014

    LUO Jiaxiang, NI Xiaoye, and HU Yueming. A hybrid differential evolution algorithm with multiple search strategies for large-scale optimization[J]. Journal of South China University of Technology:Natural Science Edition, 2017, 45(3): 97–103. doi: 10.3969/j.issn.1000-565X.2017.03.014
    MIRJALILI S and LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51–67. doi: 10.1016/j.advengsoft.2016.01.008
    龍文, 蔡紹洪, 焦建軍, 等. 求解大規(guī)模優(yōu)化問題的改進(jìn)鯨魚優(yōu)化算法[J]. 系統(tǒng)工程理論與實(shí)踐, 2017, 37(11): 2983–2994. doi: 10.12011/1000-6788(2017)11-2983-12

    LONG Wen, CAI Shaohong, JIAO Jianjun, et al. Improved whale optimization algorithm for large scale optimization problems[J]. Systems Engineering-Theory &Practice, 2017, 37(11): 2983–2994. doi: 10.12011/1000-6788(2017)11-2983-12
    MIRJALILI S, MIRJALILI S M, and LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46–61. doi: 10.1016/j.advengsoft.2013.12.007
    姜天華. 混合灰狼優(yōu)化算法求解柔性作業(yè)車間調(diào)度問題[J]. 控制與決策, 2018, 33(3): 503–508. doi: 10.13195/j.kzyjc.2017.0124

    JIANG Tianhua. Flexible job shop scheduling problem with hybrid grey wolf optimization algorithm[J]. Control and Decision, 2018, 33(3): 503–508. doi: 10.13195/j.kzyjc.2017.0124
    梁靜, 劉睿, 瞿博陽, 等. 進(jìn)化算法在大規(guī)模優(yōu)化問題中的應(yīng)用綜述[J]. 鄭州大學(xué)學(xué)報(bào): 工學(xué)版, 2018, 39(3): 15–21. doi: 10.13705/j.issn.1671-6833.2017.06.016

    LIANG Jing, LIU Rui, QU Boyang, et al. A survey of evolutionary algorithms for large scale optimization problem[J]. Journal of Zhengzhou University:Engineering Science, 2018, 39(3): 15–21. doi: 10.13705/j.issn.1671-6833.2017.06.016
    MIRJALILI S, MIRJALILI S M, and HATAMLOU A. Multi-verse optimizer: A nature-inspired algorithm for global optimization[J]. Neural Computing and Applications, 2016, 27(2): 495–513. doi: 10.1007/s00521-015-1870-7
    趙世杰, 高雷阜, 徒君, 等. 耦合橫縱向個(gè)體更新策略的改進(jìn)MVO算法[J]. 控制與決策, 2018, 33(8): 1422–1428. doi: 10.13195/j.kzyjc.2017.0441

    ZHAO Shijie, GAO Leifu, TU Jun, et al. Improved multi verse optimizer coupling horizontal-and-vertical individual updated strategies[J]. Control and Decision, 2018, 33(8): 1422–1428. doi: 10.13195/j.kzyjc.2017.0441
    CHOPRA N and SHARMA J. Multi-objective optimum load dispatch using Multi-verse optimization[C]. Proceedings of the 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems, Delhi, India, 2016: 1–5.
    HU Cong, LI Zhi, ZHOU Tian, et al. A multi-verse optimizer with levy flights for numerical optimization and its application in test scheduling for network-on-chip[J]. PLOS One, 2016, 11(12): e0167341. doi: 10.1371/journal.pone.0167341
    FARIS H, ALJARAH I, and MIRJALILI S. Training feedforward neural networks using multi-verse optimizer for binary classification problems[J]. Applied Intelligence, 2016, 45(2): 322–332. doi: 10.1007/s10489-016-0767-1
    JANGIR P, PARMAR S A, TRIVEDI I N, et al. A novel hybrid particle swarm optimizer with multi verse optimizer for global numerical optimization and optimal reactive power dispatch problem[J]. Engineering Science and Technology, An International Journal, 2017, 20(2): 570–586. doi: 10.1016/j.jestch.2016.10.007
    ALI E E, EL-HAMEED M A, EL-FERGANY A A, et al. Parameter extraction of photovoltaic generating units using multi-verse optimizer[J]. Sustainable Energy Technologies and Assessments, 2016, 17: 68–76. doi: 10.1016/j.seta.2016.08.004
    MIRJALILI S. Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems[J]. Neural Computing and Applications, 2016, 27(4): 1053–1073. doi: 10.1007/s00521-015-1920-1
    ASKARZADEH A. A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm[J]. Computers & Structures, 2016, 169: 1–12. doi: 10.1016/j.compstruc.2016.03.001
  • 加載中
圖(2) / 表(9)
計(jì)量
  • 文章訪問數(shù):  3201
  • HTML全文瀏覽量:  1296
  • PDF下載量:  118
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2018-07-22
  • 修回日期:  2019-01-17
  • 網(wǎng)絡(luò)出版日期:  2019-02-14
  • 刊出日期:  2019-07-01

目錄

    /

    返回文章
    返回