改進(jìn)多元宇宙算法求解大規(guī)模實(shí)值優(yōu)化問題
doi: 10.11999/JEIT180751
-
華南理工大學(xué)工商管理學(xué)院 廣州 510641
Application of Improved Multiverse Algorithm to Large Scale Optimization Problems
-
School of Business Administration, South China University of Technology, Guangzhou 510641, China
-
摘要: 針對(duì)多元宇宙優(yōu)化(MVO)算法中蟲洞存在機(jī)制、白洞選擇機(jī)制等不足,該文提出一種改進(jìn)多元宇宙優(yōu)化算法(IMVO)。設(shè)計(jì)固定概率的蟲洞存在機(jī)制和前期快速收斂后期平緩收斂的蟲洞旅行距離率,加快算法全局探索能力和快速迭代能力;提出黑洞的隨機(jī)白洞選擇機(jī)制,設(shè)計(jì)黑洞圍繞白洞恒星進(jìn)行公轉(zhuǎn)并模型化,解決代間宇宙信息溝通的問題,中低維度數(shù)值比較實(shí)驗(yàn)驗(yàn)證了改進(jìn)算法的優(yōu)良性能。選取大規(guī)模實(shí)值問題較難優(yōu)化的3個(gè)基準(zhǔn)測(cè)試函數(shù)進(jìn)行對(duì)比實(shí)驗(yàn),改進(jìn)算法在大規(guī)模優(yōu)化問題上的求解精度和成功率方面具有較好的適用性和魯棒性。
-
關(guān)鍵詞:
- 大規(guī)模優(yōu)化問題 /
- 多元宇宙優(yōu)化 /
- 元啟發(fā)式優(yōu)化 /
- 非線性收斂因子
Abstract: To overcome the mechanism shortcomings of wormhole and white hole selection in the Multi-Verse Optimizer (MVO), an Improved Multi-Universes Optimization (IMVO) algorithm is proposed. To speed up global exploration ability and quick iteration ability, this thesis designs the existence mechanism of wormhole with fixed probability and the Travel Distance Rate (TDR) that its convergence from early stage's smoothly to later stage's fast. The random white hole selection mechanism is proposed; Black holes can revolve around selected white hole stars and is modelled to solve the problem of information communication of the Inter-generational Universes. The performance of IMVO is verified by comparison experiments in low-middle dimensions. Three benchmarks test functions are selected for comparison in large scale which are difficult to be optimized, the experimental results show that IMVO has good applicability and robustness with higher solving accuracy and success rate in large scale optimization problem. -
表 1 文獻(xiàn)[10]的時(shí)間復(fù)雜度
操作 計(jì)算復(fù)雜度 循環(huán)次數(shù) 初始化 O(N) 1×D 計(jì)算宇宙膨脹率 O(N) L×D 排序/標(biāo)準(zhǔn)化宇宙 O(N) L×D 黑白洞換維度 O(K) L×D 穿越選擇 O((1–K)WEP) L×D 參數(shù)更新 O(1) L 下載: 導(dǎo)出CSV
表 2 本文的時(shí)間復(fù)雜度
操作 計(jì)算復(fù)雜度 循環(huán)次數(shù) 初始化 O(N) 1×D 計(jì)算宇宙膨脹率 O(N) L×D 黑白洞選擇 O(N) L×D 策略1:穿越 O(N/2) L×D 策略2:公轉(zhuǎn) O(N/2) L×D 參數(shù)更新 O(1) L 下載: 導(dǎo)出CSV
表 5 基準(zhǔn)測(cè)試函數(shù)30維度的算法對(duì)比實(shí)驗(yàn)
f1 f2 f5 f7 f9 f10 f11 f12 文獻(xiàn)[6] 均值 6.54e-125 2.15e-73 27.27950 2.42e04 0 3.02e-15 0 0.087646 標(biāo)準(zhǔn)差 6.80e-125 3.64e-73 0.215438 4.41e-04 0 1.95e-15 0 0.011997 本文 均值 5.24e-21 1.86e-11 2.46e-20 3.41e-04 0 5.51e-12 0 1.14e-23 標(biāo)準(zhǔn)差 1.96e-20 1.37e-11 4.03e-20 3.23e-04 0 6.56e-12 0 1.90e-23 下載: 導(dǎo)出CSV
表 6 基準(zhǔn)測(cè)試函數(shù)10維度的算法對(duì)比實(shí)驗(yàn)
函數(shù) 算法 DA[18] CSA[17] MVO[10] IMVO[11] 本文 f10 均值 2.28 1.07 8.06e-02 4.27e-05 9.66e-12 標(biāo)準(zhǔn)差 1.13 0.921 2.04e-01 2.22e-05 8.08e-12 最差值 4.20 3.02 1.16 1.04e-04 7.76e-11 最好值 4.44e-15 1.75e-03 1.17e-02 7.08e-06 3.67e-13 f12 均值 9.78e-01 3.83e-01 1.07e-02 1.25e-10 4.32e-23 標(biāo)準(zhǔn)差 8.58e-01 6.07e-01 5.70e-02 1.18e-10 1.06e-22 最差值 3.49 3.20 3.12e-01 4.45e-10 4.71e-22 最好值 4.84e-03 5.67e-05 9.21e-05 7.76e-12 9.15e-27 下載: 導(dǎo)出CSV
F 對(duì)比算法 D=200 D=500 均值 標(biāo)準(zhǔn)差 成功率(%) 均值 標(biāo)準(zhǔn)差 成功率(%) f2 文獻(xiàn)[10] 7.50e-51 9.40e-51 100 1.10e-49 2.10e-49 100 文獻(xiàn)[6] 1.60e-67 1.90e-67 100 5.30e-66 9.60e-66 100 本文 1.59e-10 1.43e-10 100 2.56e-10 2.41e-10 100 f5 文獻(xiàn)[10] 1.98e+02 2.22e-01 0 4.96e02 4.66e-01 0 文獻(xiàn)[6] 1.98e+02 5.43e-02 0 4.96e02 3.78e-01 0 本文 6.13e-20 1.29e-19 100 3.48e-19 4.15e-19 100 f10 文獻(xiàn)[10] 5.15e-15 1.94e-15 100 5.86e-15 2.97e-15 100 文獻(xiàn)[6] 8.88e-16 0 100 4.44e-15 0 100 本文 7.16e-12 6.87e-12 100 6.49e-12 1.13e-11 100 f12 文獻(xiàn)[10] 8.09e-02 4.05e-02 0 9.19e-02 5.92e-02 0 文獻(xiàn)[6] 2.02e-02 2.75e-02 0 8.30e-02 3.17e-02 0 本文 5.09e-24 8.06e-24 100 4.25e-24 9.01e-24 100 下載: 導(dǎo)出CSV
表 9 改進(jìn)算法的大規(guī)模實(shí)值優(yōu)化結(jié)果(閾值為1)
F 對(duì)比算法 D=1000 D=2000 均值 標(biāo)準(zhǔn)差 成功率(%) 均值 標(biāo)準(zhǔn)差 成功率(%) f5 文獻(xiàn)[10] 8.70e+08 7.81e+07 0 7.11e+09 3.23e+08 0 本文 2.05e-19 3.42e-19 100 5.62e-19 1.37e-18 100 f7 文獻(xiàn)[10] 1.08e+04 8.35e+02 0 1.81e+05 9.44e+03 0 本文 2.52e-04 3.99e-04 100 2.70e-04 3.87e-04 100 f9 文獻(xiàn)[10] 1.37e+04 3.36e+02 0 3.04e+04 3.28e+02 0 本文 0 0 100 0 0 100 下載: 導(dǎo)出CSV
-
MAHDAVI S, RAHNAMAYAN S, and SHIRI M E. Multilevel framework for large-scale global optimization[J]. Soft Computing, 2017, 21(14): 4111–4140. doi: 10.1007/s00500-016-2060-y BOLUFé-R?HLER A, FIOL-GONZáLEZ S, and CHEN S. A minimum population search hybrid for large scale global optimization[C]. Proceedings of 2015 IEEE Congress on Evolutionary Computation, Sendai, Japan, 2015: 1958–1965. doi: 10.1109/CEC.2015.7257125. 梁靜, 劉睿, 于坤杰, 等. 求解大規(guī)模問題協(xié)同進(jìn)化動(dòng)態(tài)粒子群優(yōu)化算法[J]. 軟件學(xué)報(bào), 2018, 29(9): 2595–2605. doi: 10.13328/j.cnki.jos.005398LIANG Jing, LIU Rui, YU Kunjie, et al. Dynamic multi-swarm particle swarm optimization with cooperative coevolution for large scale global optimization[J]. Journal of Software, 2018, 29(9): 2595–2605. doi: 10.13328/j.cnki.jos.005398 羅家祥, 倪曉曄, 胡躍明. 融合多種搜索策略的差分進(jìn)化大規(guī)模優(yōu)化算法[J]. 華南理工大學(xué)學(xué)報(bào): 自然科學(xué)版, 2017, 45(3): 97–103. doi: 10.3969/j.issn.1000-565X.2017.03.014LUO Jiaxiang, NI Xiaoye, and HU Yueming. A hybrid differential evolution algorithm with multiple search strategies for large-scale optimization[J]. Journal of South China University of Technology:Natural Science Edition, 2017, 45(3): 97–103. doi: 10.3969/j.issn.1000-565X.2017.03.014 MIRJALILI S and LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51–67. doi: 10.1016/j.advengsoft.2016.01.008 龍文, 蔡紹洪, 焦建軍, 等. 求解大規(guī)模優(yōu)化問題的改進(jìn)鯨魚優(yōu)化算法[J]. 系統(tǒng)工程理論與實(shí)踐, 2017, 37(11): 2983–2994. doi: 10.12011/1000-6788(2017)11-2983-12LONG Wen, CAI Shaohong, JIAO Jianjun, et al. Improved whale optimization algorithm for large scale optimization problems[J]. Systems Engineering-Theory &Practice, 2017, 37(11): 2983–2994. doi: 10.12011/1000-6788(2017)11-2983-12 MIRJALILI S, MIRJALILI S M, and LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46–61. doi: 10.1016/j.advengsoft.2013.12.007 姜天華. 混合灰狼優(yōu)化算法求解柔性作業(yè)車間調(diào)度問題[J]. 控制與決策, 2018, 33(3): 503–508. doi: 10.13195/j.kzyjc.2017.0124JIANG Tianhua. Flexible job shop scheduling problem with hybrid grey wolf optimization algorithm[J]. Control and Decision, 2018, 33(3): 503–508. doi: 10.13195/j.kzyjc.2017.0124 梁靜, 劉睿, 瞿博陽, 等. 進(jìn)化算法在大規(guī)模優(yōu)化問題中的應(yīng)用綜述[J]. 鄭州大學(xué)學(xué)報(bào): 工學(xué)版, 2018, 39(3): 15–21. doi: 10.13705/j.issn.1671-6833.2017.06.016LIANG Jing, LIU Rui, QU Boyang, et al. A survey of evolutionary algorithms for large scale optimization problem[J]. Journal of Zhengzhou University:Engineering Science, 2018, 39(3): 15–21. doi: 10.13705/j.issn.1671-6833.2017.06.016 MIRJALILI S, MIRJALILI S M, and HATAMLOU A. Multi-verse optimizer: A nature-inspired algorithm for global optimization[J]. Neural Computing and Applications, 2016, 27(2): 495–513. doi: 10.1007/s00521-015-1870-7 趙世杰, 高雷阜, 徒君, 等. 耦合橫縱向個(gè)體更新策略的改進(jìn)MVO算法[J]. 控制與決策, 2018, 33(8): 1422–1428. doi: 10.13195/j.kzyjc.2017.0441ZHAO Shijie, GAO Leifu, TU Jun, et al. Improved multi verse optimizer coupling horizontal-and-vertical individual updated strategies[J]. Control and Decision, 2018, 33(8): 1422–1428. doi: 10.13195/j.kzyjc.2017.0441 CHOPRA N and SHARMA J. Multi-objective optimum load dispatch using Multi-verse optimization[C]. Proceedings of the 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems, Delhi, India, 2016: 1–5. HU Cong, LI Zhi, ZHOU Tian, et al. A multi-verse optimizer with levy flights for numerical optimization and its application in test scheduling for network-on-chip[J]. PLOS One, 2016, 11(12): e0167341. doi: 10.1371/journal.pone.0167341 FARIS H, ALJARAH I, and MIRJALILI S. Training feedforward neural networks using multi-verse optimizer for binary classification problems[J]. Applied Intelligence, 2016, 45(2): 322–332. doi: 10.1007/s10489-016-0767-1 JANGIR P, PARMAR S A, TRIVEDI I N, et al. A novel hybrid particle swarm optimizer with multi verse optimizer for global numerical optimization and optimal reactive power dispatch problem[J]. Engineering Science and Technology, An International Journal, 2017, 20(2): 570–586. doi: 10.1016/j.jestch.2016.10.007 ALI E E, EL-HAMEED M A, EL-FERGANY A A, et al. Parameter extraction of photovoltaic generating units using multi-verse optimizer[J]. Sustainable Energy Technologies and Assessments, 2016, 17: 68–76. doi: 10.1016/j.seta.2016.08.004 MIRJALILI S. Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems[J]. Neural Computing and Applications, 2016, 27(4): 1053–1073. doi: 10.1007/s00521-015-1920-1 ASKARZADEH A. A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm[J]. Computers & Structures, 2016, 169: 1–12. doi: 10.1016/j.compstruc.2016.03.001 -