一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

結(jié)合字典學習技術(shù)的ISAR稀疏成像方法

胡長雨 汪玲 朱棟強

胡長雨, 汪玲, 朱棟強. 結(jié)合字典學習技術(shù)的ISAR稀疏成像方法[J]. 電子與信息學報, 2019, 41(7): 1735-1742. doi: 10.11999/JEIT180747
引用本文: 胡長雨, 汪玲, 朱棟強. 結(jié)合字典學習技術(shù)的ISAR稀疏成像方法[J]. 電子與信息學報, 2019, 41(7): 1735-1742. doi: 10.11999/JEIT180747
Changyu HU, Ling WANG, Dongqiang ZHU. Sparse ISAR Imaging Exploiting Dictionary Learning[J]. Journal of Electronics & Information Technology, 2019, 41(7): 1735-1742. doi: 10.11999/JEIT180747
Citation: Changyu HU, Ling WANG, Dongqiang ZHU. Sparse ISAR Imaging Exploiting Dictionary Learning[J]. Journal of Electronics & Information Technology, 2019, 41(7): 1735-1742. doi: 10.11999/JEIT180747

結(jié)合字典學習技術(shù)的ISAR稀疏成像方法

doi: 10.11999/JEIT180747
基金項目: 國家自然科學基金(61871217),江蘇省研究生科研與實踐創(chuàng)新計劃(KYCX18_0291)
詳細信息
    作者簡介:

    胡長雨:男,1989年生,博士生,研究方向為逆合成孔徑雷達稀疏成像

    汪玲:女,1977年生,教授,博士生導師,研究方向為合成孔徑成像、逆合成孔徑成像、無源成像、壓縮感知成像和超分辨成像

    朱棟強:男,1993年生,碩士生,研究方向為基于壓縮感知的ISAR成像

    通訊作者:

    汪玲 tulip_wling@nuaa.edu.cn

  • 中圖分類號: TN957.52

Sparse ISAR Imaging Exploiting Dictionary Learning

Funds: The National Natural Science Foundation of China (61871217), The Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX18_0291)
  • 摘要: 鑒于稀疏ISAR成像方法的成像質(zhì)量受到待成像場景的稀疏表示不準確的限制,該文將字典學習(DL)技術(shù)引入到ISAR稀疏成像中,以提升目標成像質(zhì)量。該文給出基于離線DL和在線DL兩種ISAR稀疏成像方法。前者通過已有同類目標ISAR圖像進行學習,獲得更優(yōu)稀疏表示,后者在成像過程中從現(xiàn)有數(shù)據(jù)中通過優(yōu)化獲得稀疏表示。仿真和實測ISAR數(shù)據(jù)成像結(jié)果表明,結(jié)合離線DL和在線DL的成像方法均可獲得比現(xiàn)有方法更優(yōu)的成像結(jié)果,離線DL成像優(yōu)于在線DL成像,而且前者計算效率優(yōu)于后者。
  • 圖  1  飛機目標全數(shù)據(jù)采用RD方法和50%數(shù)據(jù)采用CS 方法的成像結(jié)果

    圖  2  衛(wèi)星目標全數(shù)據(jù)采用RD方法和25%數(shù)據(jù)采用CS方法的成像結(jié)果

    表  1  飛機目標成像性能評價

    成像方法FAMDRRMSETCRENTIC運算時間(s)
    OMP891650.192357.02035.46318.0294116.1757
    GKF861030.204455.59305.38008.14491.0058e3
    在線DL74750.153557.56295.38078.210352.5790
    離線DL64700.141159.03225.36858.286824.8510
    下載: 導出CSV

    表  2  衛(wèi)星目標成像性能評價

    成像方法FAMDRRMSETCRENTIC運算時間(s)
    OMP1465070.373663.29566.42099.809956.1323
    GKF1404780.255065.33826.374010.38431.6485e4
    在線DL1421610.176565.91636.60989.503919.2178
    離線DL1221470.156467.25066.61379.60944.1543
    下載: 導出CSV
  • PRICKETT M J and CHEN C C. Principles of inverse synthetic aperture radar /ISAR/ imaging[C]. IEEE Electronics and Aerospace Systems Conference, New York, USA, 1980: 340–345.
    GENG Minming, TIAN Ye, FANG Jian, et al. Implementation of GPU-based iterative shrinkage-thresholding algorithm in sparse microwave imaging[C]. Proceedings of 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012: 3863–3866.
    CETIN M and KARL W C. Feature-enhanced synthetic aperture radar image formation based on nonquadratic regularization[J]. IEEE Transactions on Image Processing, 2001, 10(4): 623–631. doi: 10.1109/83.913596
    汪玲, 朱棟強, 馬凱莉, 等. 空間目標卡爾曼濾波稀疏成像方法[J]. 電子與信息學報, 2018, 40(4): 846–852. doi: 10.11999/JEIT170319

    WANG Ling, ZHU Dongqiang, MA Kaili, et al. Sparse imaging of space targets using Kalman filter[J]. Journal of Electronics &Information Technology, 2018, 40(4): 846–852. doi: 10.11999/JEIT170319
    徐宗本, 吳一戎, 張冰塵, 等. 基于L1/2正則化理論的稀疏雷達成像[J]. 科學通報, 2018, 63(14): 1306–1319. doi: 10.1360/N972018-00372

    XU Zongben, WU Yirong, ZHANG Bingchen, et al. Sparse radar imaging based on L1/2 regularization theory[J]. Chinese Science Bulletin, 2018, 63(14): 1306–1319. doi: 10.1360/N972018-00372
    HASANKHAN M J, SAMADI S, and ?ETIN M. Sparse representation-based algorithm for joint SAR image formation and autofocus[J]. Signal, Image and Video Processing, 2017, 11(4): 589–596. doi: 10.1007/s11760-016-0998-y
    BI Hui, BI Guoan, ZHANG Bingchen, et al. Complex-image-based sparse SAR imaging and its equivalence[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(9): 5006–5014. doi: 10.1109/TGRS.2018.2803802
    SAMADI S, CETIN M, and MASNADI-SHIRAZI M A. Sparse representation-based synthetic aperture radar imaging[J]. IET Radar, Sonar & Navigation, 2011, 5(2): 182–193. doi: 10.1049/iet-rsn.2009.0235
    WANG Ling, LOFFELD O, MA Kaili, et al. Sparse ISAR imaging using a greedy kalman filtering approach[J]. Signal Processing, 2017, 138: 1–10. doi: 10.1016/j.sigpro.2017.03.002
    DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582
    BARANIUK R and STEEGHS P. Compressive radar imaging[C]. Proceedings of 2007 IEEE Radar Conference, Boston, USA, 2007: 128–133.
    WANG Lu, ZHAO Lifan, and BI Guoan. Structured sparse representation based ISAR imaging[C]. Proceedings of the 2014 15th International Radar Symposium, Gdansk, Poland, 2014: 1–5.
    YANKELEVSKY Y and ELAD M. Dictionary learning for high dimensional graph signals[C]. Proceedings of 2018 IEEE International Conference on Acoustics, Speech and Signal Processing, Calgary, Canada, 2018: 4669–4673.
    YANKELEVSKY Y and ELAD M. Structure-aware classification using supervised dictionary learning[C]. Proceedings of 2017 IEEE International Conference on Acoustics, Speech and Signal Processing, New Orleans, USA, 2017: 4421–4425.
    SO?ANLUI A and ?ETIN M. Dictionary learning for sparsity-driven SAR image reconstruction[C]. Proceedings of 2014 IEEE International Conference on Image Processing, Paris, France, 2014: 1693–1697.
    JIANG Changhui, ZHANG Qiyang, FAN Rui, et al. Super-resolution CT image reconstruction based on dictionary learning and sparse representation[J]. Scientific Reports, 2018, 8(1): 8799. doi: 10.1038/s41598-018-27261-z
    AHARON M, ELAD M, and BRUCKSTEIN A. rmK-SVD: An algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311–4322. doi: 10.1109/TSP.2006.881199
    PATI Y C, REZAIIFAR R, and KRISHNAPRASAD P S. Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition[C]. Proceedings of the 27th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 1993: 40–44.
    WANG Ling and LOFFELD O. ISAR imaging using a null space ?1minimizing Kalman filter approach[C]. Proceedings of the 2016 4th International Workshop on Compressed Sensing Theory and Its Applications to Radar, Sonar and Remote Sensing, Aachen, Germany, 2016: 232–236.
    AHARON M and ELAD M. Sparse and redundant modeling of image content using an image-signature-dictionary[J]. SIAM Journal on Imaging Sciences, 2008, 1(3): 228–247. doi: 10.1137/07070156X
    ZHU Daiyin, WANG Ling, YU Yusheng, et al. Robust ISAR range alignment via minimizing the entropy of the average range profile[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(2): 204–208. doi: 10.1109/LGRS.2008.2010562
    汪玲, 朱岱寅, 朱兆達. 基于SAR實測數(shù)據(jù)的艦船成像研究[J]. 電子與信息學報, 2007, 29(2): 401–404.

    WANG Ling, ZHU Daiyin, and ZHU Zhaoda. Study on ship imaging using SAR real data[J]. Journal of Electronics &Information Technology, 2007, 29(2): 401–404.
    HU Changyu, WANG Ling, and LOFFELD O. Inverse synthetic aperture radar imaging exploiting dictionary learning[C]. Proceedings of 2018 IEEE Radar Conference, Oklahoma City, USA, 2018: 1084–1088.
    LOFFELD O, ESPETER T, and CONDE M H. From weighted least squares estimation to sparse CS reconstruction[C]. Proceedings of the 2015 3rd International Workshop on Compressed Sensing Theory and Its Applications to Radar, Sonar and Remote Sensing, Pisa, Italy, 2015: 149–153.
  • 加載中
圖(2) / 表(2)
計量
  • 文章訪問數(shù):  2445
  • HTML全文瀏覽量:  1233
  • PDF下載量:  106
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2018-07-23
  • 修回日期:  2019-01-21
  • 網(wǎng)絡出版日期:  2019-02-14
  • 刊出日期:  2019-07-01

目錄

    /

    返回文章
    返回