結(jié)合字典學習技術(shù)的ISAR稀疏成像方法
doi: 10.11999/JEIT180747
-
南京航空航天大學雷達成像與微波光子技術(shù)教育部重點實驗室 ??南京 ??210016
基金項目: 國家自然科學基金(61871217),江蘇省研究生科研與實踐創(chuàng)新計劃(KYCX18_0291)
Sparse ISAR Imaging Exploiting Dictionary Learning
-
Key Laboratory of Radar Imaging and Microwave Photonics of the Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Funds: The National Natural Science Foundation of China (61871217), The Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX18_0291)
-
摘要: 鑒于稀疏ISAR成像方法的成像質(zhì)量受到待成像場景的稀疏表示不準確的限制,該文將字典學習(DL)技術(shù)引入到ISAR稀疏成像中,以提升目標成像質(zhì)量。該文給出基于離線DL和在線DL兩種ISAR稀疏成像方法。前者通過已有同類目標ISAR圖像進行學習,獲得更優(yōu)稀疏表示,后者在成像過程中從現(xiàn)有數(shù)據(jù)中通過優(yōu)化獲得稀疏表示。仿真和實測ISAR數(shù)據(jù)成像結(jié)果表明,結(jié)合離線DL和在線DL的成像方法均可獲得比現(xiàn)有方法更優(yōu)的成像結(jié)果,離線DL成像優(yōu)于在線DL成像,而且前者計算效率優(yōu)于后者。Abstract: In view of the imaging quality of sparse ISAR imaging methods is limited by the inaccurate sparse representation of the scene to be imaged, the Dictionary Learning (DL) technique is introduced into ISAR sparse imaging to get better sparse representation of the scene. An off-line DL based imaging method and an on-line DL based imaging method are proposed. The off-line DL imaging method can obtain a better sparse representation via a dictionary learned from the available ISAR images. The on-line DL imaging method can obtain the sparse representation from the data currently considered by jointly optimizing the imaging and DL processes. The results of both simulated and real ISAR data show that the on-line DL imaging method and the off-line dictionary imaging method are both able to better sparsely represent the target scene leading to better imaging results. The off-line DL based imaging method works better than the on-line DL based imaging method with respect to both imaging quality and computational efficiency.
-
表 1 飛機目標成像性能評價
成像方法 FA MD RRMSE TCR ENT IC 運算時間(s) OMP 89 165 0.1923 57.0203 5.4631 8.0294 116.1757 GKF 86 103 0.2044 55.5930 5.3800 8.1449 1.0058e3 在線DL 74 75 0.1535 57.5629 5.3807 8.2103 52.5790 離線DL 64 70 0.1411 59.0322 5.3685 8.2868 24.8510 下載: 導出CSV
表 2 衛(wèi)星目標成像性能評價
成像方法 FA MD RRMSE TCR ENT IC 運算時間(s) OMP 146 507 0.3736 63.2956 6.4209 9.8099 56.1323 GKF 140 478 0.2550 65.3382 6.3740 10.3843 1.6485e4 在線DL 142 161 0.1765 65.9163 6.6098 9.5039 19.2178 離線DL 122 147 0.1564 67.2506 6.6137 9.6094 4.1543 下載: 導出CSV
-
PRICKETT M J and CHEN C C. Principles of inverse synthetic aperture radar /ISAR/ imaging[C]. IEEE Electronics and Aerospace Systems Conference, New York, USA, 1980: 340–345. GENG Minming, TIAN Ye, FANG Jian, et al. Implementation of GPU-based iterative shrinkage-thresholding algorithm in sparse microwave imaging[C]. Proceedings of 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012: 3863–3866. CETIN M and KARL W C. Feature-enhanced synthetic aperture radar image formation based on nonquadratic regularization[J]. IEEE Transactions on Image Processing, 2001, 10(4): 623–631. doi: 10.1109/83.913596 汪玲, 朱棟強, 馬凱莉, 等. 空間目標卡爾曼濾波稀疏成像方法[J]. 電子與信息學報, 2018, 40(4): 846–852. doi: 10.11999/JEIT170319WANG Ling, ZHU Dongqiang, MA Kaili, et al. Sparse imaging of space targets using Kalman filter[J]. Journal of Electronics &Information Technology, 2018, 40(4): 846–852. doi: 10.11999/JEIT170319 徐宗本, 吳一戎, 張冰塵, 等. 基于L1/2正則化理論的稀疏雷達成像[J]. 科學通報, 2018, 63(14): 1306–1319. doi: 10.1360/N972018-00372XU Zongben, WU Yirong, ZHANG Bingchen, et al. Sparse radar imaging based on L1/2 regularization theory[J]. Chinese Science Bulletin, 2018, 63(14): 1306–1319. doi: 10.1360/N972018-00372 HASANKHAN M J, SAMADI S, and ?ETIN M. Sparse representation-based algorithm for joint SAR image formation and autofocus[J]. Signal, Image and Video Processing, 2017, 11(4): 589–596. doi: 10.1007/s11760-016-0998-y BI Hui, BI Guoan, ZHANG Bingchen, et al. Complex-image-based sparse SAR imaging and its equivalence[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(9): 5006–5014. doi: 10.1109/TGRS.2018.2803802 SAMADI S, CETIN M, and MASNADI-SHIRAZI M A. Sparse representation-based synthetic aperture radar imaging[J]. IET Radar, Sonar & Navigation, 2011, 5(2): 182–193. doi: 10.1049/iet-rsn.2009.0235 WANG Ling, LOFFELD O, MA Kaili, et al. Sparse ISAR imaging using a greedy kalman filtering approach[J]. Signal Processing, 2017, 138: 1–10. doi: 10.1016/j.sigpro.2017.03.002 DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582 BARANIUK R and STEEGHS P. Compressive radar imaging[C]. Proceedings of 2007 IEEE Radar Conference, Boston, USA, 2007: 128–133. WANG Lu, ZHAO Lifan, and BI Guoan. Structured sparse representation based ISAR imaging[C]. Proceedings of the 2014 15th International Radar Symposium, Gdansk, Poland, 2014: 1–5. YANKELEVSKY Y and ELAD M. Dictionary learning for high dimensional graph signals[C]. Proceedings of 2018 IEEE International Conference on Acoustics, Speech and Signal Processing, Calgary, Canada, 2018: 4669–4673. YANKELEVSKY Y and ELAD M. Structure-aware classification using supervised dictionary learning[C]. Proceedings of 2017 IEEE International Conference on Acoustics, Speech and Signal Processing, New Orleans, USA, 2017: 4421–4425. SO?ANLUI A and ?ETIN M. Dictionary learning for sparsity-driven SAR image reconstruction[C]. Proceedings of 2014 IEEE International Conference on Image Processing, Paris, France, 2014: 1693–1697. JIANG Changhui, ZHANG Qiyang, FAN Rui, et al. Super-resolution CT image reconstruction based on dictionary learning and sparse representation[J]. Scientific Reports, 2018, 8(1): 8799. doi: 10.1038/s41598-018-27261-z AHARON M, ELAD M, and BRUCKSTEIN A. rmK-SVD: An algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311–4322. doi: 10.1109/TSP.2006.881199 PATI Y C, REZAIIFAR R, and KRISHNAPRASAD P S. Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition[C]. Proceedings of the 27th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 1993: 40–44. WANG Ling and LOFFELD O. ISAR imaging using a null space ?1minimizing Kalman filter approach[C]. Proceedings of the 2016 4th International Workshop on Compressed Sensing Theory and Its Applications to Radar, Sonar and Remote Sensing, Aachen, Germany, 2016: 232–236. AHARON M and ELAD M. Sparse and redundant modeling of image content using an image-signature-dictionary[J]. SIAM Journal on Imaging Sciences, 2008, 1(3): 228–247. doi: 10.1137/07070156X ZHU Daiyin, WANG Ling, YU Yusheng, et al. Robust ISAR range alignment via minimizing the entropy of the average range profile[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(2): 204–208. doi: 10.1109/LGRS.2008.2010562 汪玲, 朱岱寅, 朱兆達. 基于SAR實測數(shù)據(jù)的艦船成像研究[J]. 電子與信息學報, 2007, 29(2): 401–404.WANG Ling, ZHU Daiyin, and ZHU Zhaoda. Study on ship imaging using SAR real data[J]. Journal of Electronics &Information Technology, 2007, 29(2): 401–404. HU Changyu, WANG Ling, and LOFFELD O. Inverse synthetic aperture radar imaging exploiting dictionary learning[C]. Proceedings of 2018 IEEE Radar Conference, Oklahoma City, USA, 2018: 1084–1088. LOFFELD O, ESPETER T, and CONDE M H. From weighted least squares estimation to sparse CS reconstruction[C]. Proceedings of the 2015 3rd International Workshop on Compressed Sensing Theory and Its Applications to Radar, Sonar and Remote Sensing, Pisa, Italy, 2015: 149–153. -