基于分布式壓縮感知的寬帶欠定信號(hào)DOA估計(jì)
doi: 10.11999/JEIT180723
-
1.
空軍預(yù)警學(xué)院 ??武漢 ??430000
-
2.
海軍研究院 ??北京 ??100161
Underdetermined Wideband DOA Estimation Based on Distributed Compressive Sensing
-
1.
Air Force Early Warning Academy, Wuhan 430000, China
-
2.
Naval Research Academy, Beijing 100161, China
-
摘要: 為解決基于稀疏陣列的寬帶欠定信號(hào)到達(dá)角(DOA)估計(jì)問題,該文提出基于分布式壓縮感知(DCS)的寬帶DOA估計(jì)算法。首先,對(duì)稀疏陣列寬帶信號(hào)處理模型進(jìn)行理論推導(dǎo)與分析,將寬帶信號(hào)DOA估計(jì)建模成DCS問題;其次,利用經(jīng)典DCS算法實(shí)現(xiàn)稀疏陣列上的寬帶欠定信號(hào)DOA估計(jì);最后,引入網(wǎng)格失配誤差,建立包含網(wǎng)格失配參數(shù)的DCS模型,并進(jìn)行迭代求解,實(shí)現(xiàn)對(duì)DOA和網(wǎng)格失配參數(shù)的聯(lián)合估計(jì)。仿真結(jié)果表明,該算法能夠?qū)崿F(xiàn)寬帶欠定信號(hào)DOA估計(jì),較現(xiàn)有成果而言,在保證測(cè)向精度的同時(shí),具備分辨率高、運(yùn)算速度快的優(yōu)點(diǎn)。
-
關(guān)鍵詞:
- 到達(dá)角估計(jì) /
- 分布式壓縮感知 /
- 稀疏陣列 /
- 聯(lián)合稀疏 /
- 網(wǎng)格失配
Abstract: In order to realize underdetermined wideband Direction Of Arrival(DOA) estimation based on sparse array, an algorithm on account of Distributed Compressive Sensing(DCS) is proposed. Firstly, wideband signal processing model based on sparse array is deduced and the underdetermined wideband DOA estimation is formulated as a DCS problem. Then, the DCS-Simultaneous Orthogonal Matching Pursuit(DCS-SOMP) algorithm is utilized to solve this problem. Finally, the off-grid problem is considered and a joint DCS model containing off-grid parameters is established. Estimations of DOAs and off-grid parameters are achieved through iterative solution. Simulation results show that the proposed algorithm is effective and have advantages in resolution and computational complexity. -
表 1 DCS-SOMP算法
輸入:虛擬陣列接收數(shù)據(jù)${{\text{z}}_h}$,過完備字典集${\text{Φ}_h}\left( \psi \right)$,信號(hào)個(gè)數(shù)$K$。 輸出:重構(gòu)信號(hào)${{\text{s}}_h}$,支撐基列標(biāo)集合$\varOmega$。 初始化:迭代計(jì)數(shù)$i = 1,{\varOmega_0}=\varnothing ,{\hat {\text{s}}_h} = {\text{0}}$,殘差初值${{\text{r}}_{h, 0}} = {{\text{z}}_h}$。 步驟 1 ?支撐基選擇:
$ {g_i} = \mathop {\arg \max }\limits_{g \in \left\{ {1, 2, \cdots , G} \right\}} \sum\limits_{h = 1}^H {\frac{{\left| {\left\langle {{{\text{r}}_{h, i - 1}}, {{\text{φ}} _{h, g}}} \right\rangle } \right|}}{{{{\left\| {{{\text{φ}} _{h, g}}} \right\|}_2}}}} ,{\varOmega_i}={\varOmega_{i - 1}} \cup \left\{ {{g_i}} \right\}$;步驟 2 ?殘差更新:${\hat{\text{ s}}_h}={{\text{Φ}} _{{\varOmega_i}}}^\dagger {{\text{z}}_h},{{\text{r}}_{h, i}} = {{\text{z}}_h} - {{\text{Φ}} _{{\varOmega_i}}}{\hat {\text{s}}_h}$; 步驟 3 ?條件判斷:若$i < K$,則$i = i + 1$跳至步驟1,否則跳至步
驟4;步驟 4 ?結(jié)果結(jié)算:$\varOmega={\varOmega_i},{{\text{s}}_h}={{\text{Φ}} _\varOmega}^\dagger {{\text{z}}_h}$。 下載: 導(dǎo)出CSV
表 2 DCS-JSOMP算法
輸入:虛擬陣列接收數(shù)據(jù)${{\text{z}}_h}$,過完備字典集${\text{Φ}_h}\left( \text{Ψ} \right)$,網(wǎng)格失配字典${\text{Γ}_h}\left( \text{Ψ} \right)$,信號(hào)個(gè)數(shù)$K$。 輸出:重構(gòu)信號(hào)${{\text{s}}_h}$,支撐基列標(biāo)集合$\varOmega$,網(wǎng)格失配誤差${\text{Δ}} $。 初始化:迭代計(jì)數(shù)$i = 1,{\varOmega_0}=\varnothing,{\hat{\text{ s}}_h} = {\text{0}},\hat{\text{β}}_h={\text{0}}$,殘差${{\text{r}}_{h, 0}} = {{\text{z}}_h}$。
步驟 1 ?支撐基選擇:${c_g} = \sum\limits_{h = 1}^H {\frac{{\left| {\left\langle {{{\text{r}}_{h, i - 1}}, {{\text{φ }}_{h, g}}} \right\rangle } \right|}}{{{{\left\| {{{\text{φ}} _{h, g}}} \right\|}_2}}}} ,{d_g} = \sum\limits_{h = 1}^H {\frac{{\left| {\left\langle {{{\text{r}}_{h, i - 1}}, {\text{γ}_{h, g}}} \right\rangle } \right|}}{{{{\left\| {{\text{γ}_{h, g}}} \right\|}_2}}}} ,{g_i} = \mathop {\arg \max }\limits_{g \in \left\{ {1, 2, \cdots , G} \right\}} \sqrt {{c_g}^2 + {d_g}^2} ,{\varOmega_i}={\varOmega_{i - 1}} \cup \left\{ {{g_i}} \right\}$;步驟 2 ?殘差更新:${\hat{\text{ s}}_h} = {{\text{Φ}} _{{\varOmega_i}}}^\dagger \left( {{{\text{z}}_h} - {{\text{Γ}} _{{\varOmega_i}}}{\hat{\text{β}}_h}} \right),{\hat{\text{β}}_h} = {{\text{Γ}} _{{\varOmega_i}}}^\dagger \left( {{{\text{z}}_h} - {{\text{Φ}} _{{\varOmega_i}}}{{\hat {\text{s}}}_h}} \right),{{\text{r}}_{h, i}} = {{\text{z}}_h} - {{\text{Φ}} _{{\varOmega_i}}}{\hat{\text{ s}}_h} - {{\text{Γ}} _{{\varOmega_i}}}{\hat{\text{β}}_h}$; 步驟 3 ?條件判斷:若$i < K$,則$i = i + 1$跳至步驟1,否則跳至步驟4;
步驟 4 ?結(jié)果結(jié)算:$\varOmega={\varOmega_i},{{\text{s}}_h} = {{\text{Φ}} _\varOmega}^\dagger \left( {{{\text{z}}_h} - {{\text{Γ}} _\varOmega}{\hat{\text{β}}_h}} \right),{\text{β}_h} = {{\text{Γ}} _\varOmega}^\dagger \left( {{{\text{z}}_h} - {{\text{Φ}} _\varOmega}{{\text{s}}_h}} \right),{\text{Δ}} =\frac{1}{H}\sum\limits_{h = 1}^H {\frac{{{{\text{β}} _h}}}{{{{\text{s}}_h}}}} $。下載: 導(dǎo)出CSV
表 3 5種算法單次蒙特卡洛實(shí)驗(yàn)用時(shí)(s)
算法 信噪比變化 頻域快拍次數(shù)變化 DCS-SOMP 0.1747 0.1943 DCS-JSOMP 0.3439 0.3784 SS-MUSIC 0.5021 0.5207 WNNSBL 3.3751 3.0231 OGSLIM 0.6068 0.6678 下載: 導(dǎo)出CSV
-
SELVA J. Efficient wideband DOA estimation through function evaluation techniques[J]. IEEE Transactions on Signal Processing, 2018, 66(12): 3112–3123. doi: 10.1109/TSP.2018.2824256 DAS A and SEJNOWSKI T J. Narrowband and wideband off-grid direction-of-arrival estimation via sparse Bayesian learning[J]. IEEE Journal of Oceanic Engineering, 2018, 43(1): 108–118. doi: 10.1109/JOE.2017.2660278 ZHANG Ailian and XU Wen. A new sparse subspace method for wideband DOA estimation[C]. OCEANS, Aberdeen, UK, 2017: 1–7. LIU Jianyan, LU Yilong, ZHANG Yanmei, et al. DOA estimation with enhanced DOFs by exploiting cyclostationarity[J]. IEEE Transactions on Signal Processing, 2017, 65(6): 1486–1496. doi: 10.1109/TSP.2016.2645542 SHEN Qing, CUI Wei, LIU Wei, et al. Underdetermined wideband DOA estimation of off-grid sources employing the difference co-array concept[J]. Signal Processing, 2017, 130: 299–304. doi: 10.1016/j.sigpro.2016.07.022 PAL P and VAIDYANATHAN P P. Nested arrays: A novel approach to array processing with enhanced degrees of freedom[J]. IEEE Transactions on Signal Processing, 2010, 58(8): 4167–4181. doi: 10.1109/TSP.2010.2049264 VAIDYANATHAN P P and PAL P. Sparse sensing with co-prime samplers and arrays[J]. IEEE Transactions on Signal Processing, 2011, 59(2): 573–586. doi: 10.1109/TSP.2010.2089682 VAIDYANATHAN P P and PAL P. Sparse sensing with coprime arrays[C]. Proceedings of the 2010 Conference Record of the 44th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2010: 1405–1409. doi: 10.1109/acssc.2010.5757766. HAN Keyong and NEHORAI A. Wideband direction of arrival estimation using nested arrays[C]. Proceedings of the 20135th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, St. Martin, France, 2013: 188–191. doi: 10.1109/camsap.2013.6714039. HAN Keyong and NEHORAI A. Wideband Gaussian source processing using a linear nested array[J]. IEEE Signal Processing Letters, 2013, 20(11): 1110–1113. doi: 10.1109/LSP.2013.2281514 SHEN Qing, LIU Wei, CUI Wei, et al. Group sparsity based wideband DOA estimation for co-prime arrays[C]. Proceedings of 2014 IEEE China Summit & International Conference on Signal and Information Processing, Xi'an, China, 2014: 252–256. doi: 10.1109/chinasip.2014.6889242. SHEN Qing, LIU Wei, CUI Wei, et al. Low-complexity direction-of-arrival estimation based on wideband co-prime arrays[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2015, 23(9): 1445–1456. doi: 10.1109/TASLP.2015.2436214 HE Zhenqing, SHI Zhiping, HUANG Lei, et al. Underdetermined DOA estimation for wideband signals using robust sparse covariance fitting[J]. IEEE Signal Processing Letters, 2015, 22(4): 435–439. doi: 10.1109/LSP.2014.2358084 HU Nan, SUN Bing, ZHANG Yi, et al. Underdetermined DOA estimation method for wideband signals using joint nonnegative sparse Bayesian learning[J]. IEEE Signal Processing Letters, 2017, 24(5): 535–539. doi: 10.1109/LSP.2017.2673850 HU Nan, SUN Bing, WANG Jiajun, et al. Source localization for sparse array using nonnegative sparse Bayesian learning[J]. Signal Processing, 2016, 127: 37–43. doi: 10.1016/j.sigpro.2016.02.025 馮明月, 何明浩, 徐璟, 等. 低信噪比條件下寬帶欠定信號(hào)高精度DOA估計(jì)[J]. 電子與信息學(xué)報(bào), 2017, 39(6): 1340–1347. doi: 10.11999/JEIT160921FENG Mingyue, HE Minghao, XU Jing, et al. High accuracy DOA estimation under low SNR condition for wideband underdetermined signals[J]. Journal of Electronics &Information Technology, 2017, 39(6): 1340–1347. doi: 10.11999/JEIT160921 DUARTE M F, SARVOTHAM S, BARON D, et al. Distributed compressed sensing of jointly sparse signals[C]. Proceedings of the Conference Record of the 39th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2005: 1537–1541. TROPP J A, GILBERT A C, and STRAUSS M J. Simultaneous sparse approximation via greedy pursuit[C]. Proceedings of 2005 IEEE International Conference on Acoustics, Speech, and Signal Processing, Philadelphia, USA, 2005: 721–724. doi: 10.1109/icassp.2005.1416405. TAN Zhao and NEHORAI A. Sparse direction of arrival estimation using co-prime arrays with off-grid targets[J]. IEEE Signal Processing Letters, 2014, 21(1): 26–29. doi: 10.1109/LSP.2013.2289740 -