一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于分布式壓縮感知的寬帶欠定信號(hào)DOA估計(jì)

蔣瑩 王冰切 韓俊 何翼

蔣瑩, 王冰切, 韓俊, 何翼. 基于分布式壓縮感知的寬帶欠定信號(hào)DOA估計(jì)[J]. 電子與信息學(xué)報(bào), 2019, 41(7): 1690-1697. doi: 10.11999/JEIT180723
引用本文: 蔣瑩, 王冰切, 韓俊, 何翼. 基于分布式壓縮感知的寬帶欠定信號(hào)DOA估計(jì)[J]. 電子與信息學(xué)報(bào), 2019, 41(7): 1690-1697. doi: 10.11999/JEIT180723
Ying JIANG, Bingqie WANG, Jun HAN, Yi HE. Underdetermined Wideband DOA Estimation Based on Distributed Compressive Sensing[J]. Journal of Electronics & Information Technology, 2019, 41(7): 1690-1697. doi: 10.11999/JEIT180723
Citation: Ying JIANG, Bingqie WANG, Jun HAN, Yi HE. Underdetermined Wideband DOA Estimation Based on Distributed Compressive Sensing[J]. Journal of Electronics & Information Technology, 2019, 41(7): 1690-1697. doi: 10.11999/JEIT180723

基于分布式壓縮感知的寬帶欠定信號(hào)DOA估計(jì)

doi: 10.11999/JEIT180723
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(61771484),湖北省自然科學(xué)基金(2016CFB288)
詳細(xì)信息
    作者簡(jiǎn)介:

    蔣瑩:女,1991年生,博士生,研究方向?yàn)殡娮訉?duì)抗信息處理

    王冰切:男,1972年生,副教授,碩士生導(dǎo)師,研究方向?yàn)槔走_(dá)系統(tǒng)與雷達(dá)對(duì)抗

    韓俊:男,1983年生,講師,研究方向?yàn)槔走_(dá)對(duì)抗

    何翼:男,1989年生,助理研究員,研究方向?yàn)橐曨l圖像處理及模式識(shí)別與人工智能

    通訊作者:

    何翼 jty614@163.com

  • 中圖分類號(hào): TN971

Underdetermined Wideband DOA Estimation Based on Distributed Compressive Sensing

Funds: The National Natural Science Foundation of China(61771484), The Natural Science Foundation of Hubei Province (2016CFB288)
  • 摘要: 為解決基于稀疏陣列的寬帶欠定信號(hào)到達(dá)角(DOA)估計(jì)問題,該文提出基于分布式壓縮感知(DCS)的寬帶DOA估計(jì)算法。首先,對(duì)稀疏陣列寬帶信號(hào)處理模型進(jìn)行理論推導(dǎo)與分析,將寬帶信號(hào)DOA估計(jì)建模成DCS問題;其次,利用經(jīng)典DCS算法實(shí)現(xiàn)稀疏陣列上的寬帶欠定信號(hào)DOA估計(jì);最后,引入網(wǎng)格失配誤差,建立包含網(wǎng)格失配參數(shù)的DCS模型,并進(jìn)行迭代求解,實(shí)現(xiàn)對(duì)DOA和網(wǎng)格失配參數(shù)的聯(lián)合估計(jì)。仿真結(jié)果表明,該算法能夠?qū)崿F(xiàn)寬帶欠定信號(hào)DOA估計(jì),較現(xiàn)有成果而言,在保證測(cè)向精度的同時(shí),具備分辨率高、運(yùn)算速度快的優(yōu)點(diǎn)。
  • 圖  1  CACIS型互質(zhì)陣列結(jié)構(gòu)

    圖  2  SS-MUSIC, DCS-SOMP和DCS-JSOMP算法的空間譜

    圖  3  信噪比變化對(duì)測(cè)向精度的影響

    圖  4  頻域快拍次數(shù)變化對(duì)測(cè)向精度的影響

    圖  5  到達(dá)角臨近信號(hào)估計(jì)能力

    表  1  DCS-SOMP算法

     輸入:虛擬陣列接收數(shù)據(jù)${{\text{z}}_h}$,過完備字典集${\text{Φ}_h}\left( \psi \right)$,信號(hào)個(gè)數(shù)$K$。
     輸出:重構(gòu)信號(hào)${{\text{s}}_h}$,支撐基列標(biāo)集合$\varOmega$。
     初始化:迭代計(jì)數(shù)$i = 1,{\varOmega_0}=\varnothing ,{\hat {\text{s}}_h} = {\text{0}}$,殘差初值${{\text{r}}_{h, 0}} = {{\text{z}}_h}$。
     步驟 1 ?支撐基選擇:
    $ {g_i} = \mathop {\arg \max }\limits_{g \in \left\{ {1, 2, \cdots , G} \right\}} \sum\limits_{h = 1}^H {\frac{{\left| {\left\langle {{{\text{r}}_{h, i - 1}}, {{\text{φ}} _{h, g}}} \right\rangle } \right|}}{{{{\left\| {{{\text{φ}} _{h, g}}} \right\|}_2}}}} ,{\varOmega_i}={\varOmega_{i - 1}} \cup \left\{ {{g_i}} \right\}$;
     步驟 2 ?殘差更新:${\hat{\text{ s}}_h}={{\text{Φ}} _{{\varOmega_i}}}^\dagger {{\text{z}}_h},{{\text{r}}_{h, i}} = {{\text{z}}_h} - {{\text{Φ}} _{{\varOmega_i}}}{\hat {\text{s}}_h}$;
     步驟 3 ?條件判斷:若$i < K$,則$i = i + 1$跳至步驟1,否則跳至步
    驟4;
     步驟 4 ?結(jié)果結(jié)算:$\varOmega={\varOmega_i},{{\text{s}}_h}={{\text{Φ}} _\varOmega}^\dagger {{\text{z}}_h}$。
    下載: 導(dǎo)出CSV

    表  2  DCS-JSOMP算法

     輸入:虛擬陣列接收數(shù)據(jù)${{\text{z}}_h}$,過完備字典集${\text{Φ}_h}\left( \text{Ψ} \right)$,網(wǎng)格失配字典${\text{Γ}_h}\left( \text{Ψ} \right)$,信號(hào)個(gè)數(shù)$K$。
     輸出:重構(gòu)信號(hào)${{\text{s}}_h}$,支撐基列標(biāo)集合$\varOmega$,網(wǎng)格失配誤差${\text{Δ}} $。
     初始化:迭代計(jì)數(shù)$i = 1,{\varOmega_0}=\varnothing,{\hat{\text{ s}}_h} = {\text{0}},\hat{\text{β}}_h={\text{0}}$,殘差${{\text{r}}_{h, 0}} = {{\text{z}}_h}$。
     步驟 1 ?支撐基選擇:${c_g} = \sum\limits_{h = 1}^H {\frac{{\left| {\left\langle {{{\text{r}}_{h, i - 1}}, {{\text{φ }}_{h, g}}} \right\rangle } \right|}}{{{{\left\| {{{\text{φ}} _{h, g}}} \right\|}_2}}}} ,{d_g} = \sum\limits_{h = 1}^H {\frac{{\left| {\left\langle {{{\text{r}}_{h, i - 1}}, {\text{γ}_{h, g}}} \right\rangle } \right|}}{{{{\left\| {{\text{γ}_{h, g}}} \right\|}_2}}}} ,{g_i} = \mathop {\arg \max }\limits_{g \in \left\{ {1, 2, \cdots , G} \right\}} \sqrt {{c_g}^2 + {d_g}^2} ,{\varOmega_i}={\varOmega_{i - 1}} \cup \left\{ {{g_i}} \right\}$;
     步驟 2 ?殘差更新:${\hat{\text{ s}}_h} = {{\text{Φ}} _{{\varOmega_i}}}^\dagger \left( {{{\text{z}}_h} - {{\text{Γ}} _{{\varOmega_i}}}{\hat{\text{β}}_h}} \right),{\hat{\text{β}}_h} = {{\text{Γ}} _{{\varOmega_i}}}^\dagger \left( {{{\text{z}}_h} - {{\text{Φ}} _{{\varOmega_i}}}{{\hat {\text{s}}}_h}} \right),{{\text{r}}_{h, i}} = {{\text{z}}_h} - {{\text{Φ}} _{{\varOmega_i}}}{\hat{\text{ s}}_h} - {{\text{Γ}} _{{\varOmega_i}}}{\hat{\text{β}}_h}$;
     步驟 3 ?條件判斷:若$i < K$,則$i = i + 1$跳至步驟1,否則跳至步驟4;
     步驟 4 ?結(jié)果結(jié)算:$\varOmega={\varOmega_i},{{\text{s}}_h} = {{\text{Φ}} _\varOmega}^\dagger \left( {{{\text{z}}_h} - {{\text{Γ}} _\varOmega}{\hat{\text{β}}_h}} \right),{\text{β}_h} = {{\text{Γ}} _\varOmega}^\dagger \left( {{{\text{z}}_h} - {{\text{Φ}} _\varOmega}{{\text{s}}_h}} \right),{\text{Δ}} =\frac{1}{H}\sum\limits_{h = 1}^H {\frac{{{{\text{β}} _h}}}{{{{\text{s}}_h}}}} $。
    下載: 導(dǎo)出CSV

    表  3  5種算法單次蒙特卡洛實(shí)驗(yàn)用時(shí)(s)

    算法信噪比變化頻域快拍次數(shù)變化
    DCS-SOMP0.17470.1943
    DCS-JSOMP0.34390.3784
    SS-MUSIC0.50210.5207
    WNNSBL3.37513.0231
    OGSLIM0.60680.6678
    下載: 導(dǎo)出CSV
  • SELVA J. Efficient wideband DOA estimation through function evaluation techniques[J]. IEEE Transactions on Signal Processing, 2018, 66(12): 3112–3123. doi: 10.1109/TSP.2018.2824256
    DAS A and SEJNOWSKI T J. Narrowband and wideband off-grid direction-of-arrival estimation via sparse Bayesian learning[J]. IEEE Journal of Oceanic Engineering, 2018, 43(1): 108–118. doi: 10.1109/JOE.2017.2660278
    ZHANG Ailian and XU Wen. A new sparse subspace method for wideband DOA estimation[C]. OCEANS, Aberdeen, UK, 2017: 1–7.
    LIU Jianyan, LU Yilong, ZHANG Yanmei, et al. DOA estimation with enhanced DOFs by exploiting cyclostationarity[J]. IEEE Transactions on Signal Processing, 2017, 65(6): 1486–1496. doi: 10.1109/TSP.2016.2645542
    SHEN Qing, CUI Wei, LIU Wei, et al. Underdetermined wideband DOA estimation of off-grid sources employing the difference co-array concept[J]. Signal Processing, 2017, 130: 299–304. doi: 10.1016/j.sigpro.2016.07.022
    PAL P and VAIDYANATHAN P P. Nested arrays: A novel approach to array processing with enhanced degrees of freedom[J]. IEEE Transactions on Signal Processing, 2010, 58(8): 4167–4181. doi: 10.1109/TSP.2010.2049264
    VAIDYANATHAN P P and PAL P. Sparse sensing with co-prime samplers and arrays[J]. IEEE Transactions on Signal Processing, 2011, 59(2): 573–586. doi: 10.1109/TSP.2010.2089682
    VAIDYANATHAN P P and PAL P. Sparse sensing with coprime arrays[C]. Proceedings of the 2010 Conference Record of the 44th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2010: 1405–1409. doi: 10.1109/acssc.2010.5757766.
    HAN Keyong and NEHORAI A. Wideband direction of arrival estimation using nested arrays[C]. Proceedings of the 20135th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, St. Martin, France, 2013: 188–191. doi: 10.1109/camsap.2013.6714039.
    HAN Keyong and NEHORAI A. Wideband Gaussian source processing using a linear nested array[J]. IEEE Signal Processing Letters, 2013, 20(11): 1110–1113. doi: 10.1109/LSP.2013.2281514
    SHEN Qing, LIU Wei, CUI Wei, et al. Group sparsity based wideband DOA estimation for co-prime arrays[C]. Proceedings of 2014 IEEE China Summit & International Conference on Signal and Information Processing, Xi'an, China, 2014: 252–256. doi: 10.1109/chinasip.2014.6889242.
    SHEN Qing, LIU Wei, CUI Wei, et al. Low-complexity direction-of-arrival estimation based on wideband co-prime arrays[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2015, 23(9): 1445–1456. doi: 10.1109/TASLP.2015.2436214
    HE Zhenqing, SHI Zhiping, HUANG Lei, et al. Underdetermined DOA estimation for wideband signals using robust sparse covariance fitting[J]. IEEE Signal Processing Letters, 2015, 22(4): 435–439. doi: 10.1109/LSP.2014.2358084
    HU Nan, SUN Bing, ZHANG Yi, et al. Underdetermined DOA estimation method for wideband signals using joint nonnegative sparse Bayesian learning[J]. IEEE Signal Processing Letters, 2017, 24(5): 535–539. doi: 10.1109/LSP.2017.2673850
    HU Nan, SUN Bing, WANG Jiajun, et al. Source localization for sparse array using nonnegative sparse Bayesian learning[J]. Signal Processing, 2016, 127: 37–43. doi: 10.1016/j.sigpro.2016.02.025
    馮明月, 何明浩, 徐璟, 等. 低信噪比條件下寬帶欠定信號(hào)高精度DOA估計(jì)[J]. 電子與信息學(xué)報(bào), 2017, 39(6): 1340–1347. doi: 10.11999/JEIT160921

    FENG Mingyue, HE Minghao, XU Jing, et al. High accuracy DOA estimation under low SNR condition for wideband underdetermined signals[J]. Journal of Electronics &Information Technology, 2017, 39(6): 1340–1347. doi: 10.11999/JEIT160921
    DUARTE M F, SARVOTHAM S, BARON D, et al. Distributed compressed sensing of jointly sparse signals[C]. Proceedings of the Conference Record of the 39th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2005: 1537–1541.
    TROPP J A, GILBERT A C, and STRAUSS M J. Simultaneous sparse approximation via greedy pursuit[C]. Proceedings of 2005 IEEE International Conference on Acoustics, Speech, and Signal Processing, Philadelphia, USA, 2005: 721–724. doi: 10.1109/icassp.2005.1416405.
    TAN Zhao and NEHORAI A. Sparse direction of arrival estimation using co-prime arrays with off-grid targets[J]. IEEE Signal Processing Letters, 2014, 21(1): 26–29. doi: 10.1109/LSP.2013.2289740
  • 加載中
圖(5) / 表(3)
計(jì)量
  • 文章訪問數(shù):  3535
  • HTML全文瀏覽量:  1211
  • PDF下載量:  120
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2018-07-18
  • 修回日期:  2019-01-11
  • 網(wǎng)絡(luò)出版日期:  2019-01-22
  • 刊出日期:  2019-07-01

目錄

    /

    返回文章
    返回