基于分段循環(huán)冗余校驗的極化碼自適應(yīng)連續(xù)取消列表譯碼算法
doi: 10.11999/JEIT180716
-
重慶郵電大學(xué)通信與信息工程學(xué)院 ??重慶 ??400065
基金項目: 國家科技重大專項基金(2018ZX03001026-002)
Polar Adaptive Successive Cancellation List Decoding Based on Segmentation Cyclic Redundancy Check
-
Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
Funds: The National Science and Technology Major Project of China (2018ZX03001026-002)
-
摘要: 針對極化碼連續(xù)取消列表(SCL)譯碼算法為獲取較好性能而采用較多的保留路徑數(shù),導(dǎo)致譯碼復(fù)雜度較高的缺點,自適應(yīng)SCL譯碼算法雖然在高信噪比下降低了一定的計算量,卻帶來了較高的譯碼延時。根據(jù)極化碼的順序譯碼結(jié)構(gòu),該文提出了一種分段循環(huán)冗余校驗(CRC)與自適應(yīng)選擇保留路徑數(shù)量相結(jié)合的SCL譯碼算法。仿真結(jié)果表明,與傳統(tǒng)CRC輔助SCL譯碼算法、自適應(yīng)SCL譯碼算法相比,該算法在碼率R=0.5時,低信噪比下(–1 dB)復(fù)雜度降低了約21.6%,在高信噪比下(3 dB)復(fù)雜度降低了約64%,同時獲得較好的譯碼性能。
-
關(guān)鍵詞:
- 極化碼 /
- 自適應(yīng)譯碼 /
- 連續(xù)取消列表 /
- 分段循環(huán)冗余校驗
Abstract: Considering the problem that using a large number of reserved paths causes higher complexity in order to obtain better performance for polar code Successive Cancellation List (SCL) decoding, the adaptive SCL decoding algorithm at a high Signal to Noise Ratio (SNR) reduces a certain amount of calculations, however, brings a higher decoding delay. According to the order of polar code decoding, an SCL decoding algorithm combining segmentation Cyclic Redundancy Check (CRC) with adaptively selecting the number of reserved paths is proposed. The simulation results show that compared with the traditional CRC-assisted SCL decoding algorithm and adaptive-SCL algorithm, when the code rate is R=0.5, the complexity under low SNR (–1 dB) is reduced by about 21.6%, and the complexity at high SNR (3 dB) is reduced by about 64%, at the same time, better decoding performance is obtained. -
表 1 仿真參數(shù)
仿真參數(shù) 具體內(nèi)容 編碼結(jié)構(gòu) ${G_N} = {F^{ \otimes n}}$ 信道環(huán)境 AWGN 調(diào)制方式 BPSK 子信道置信序列構(gòu)造法 DE-GA 譯碼算法 CA-SCL, AD-SCL, SCAD-SCL 下載: 導(dǎo)出CSV
表 2 R=0.5時不同算法復(fù)雜度比較
${E_b}/{N_0}$ (dB) –1.0 –0.5 0 0.5 1.0 1.5 2.0 2.5 3.0 AD-SCL 42304 42239 40850 32248 14153 4648 2034 1588 1536 SCAD-SCL 33177 33120 31918 24274 10590 2696 837 571 538 下載: 導(dǎo)出CSV
-
ARIKAN E. Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels[J]. IEEE Transactions on Information Theory, 2009, 55(7): 3051–3073. doi: 10.1109/TIT.2009.2021379 ARIKAN E and TELATAR E. On the rate of channel polarization[C]. Proceedings of 2009 IEEE International Symposium on Information Theory, Seoul, South Korea, 2009: 1493–1495. ZHANG Chuan and PARHI K K. Low-latency sequential and overlapped architectures for successive cancellation polar decoder[J]. IEEE Transactions on Signal Processing, 2013, 61(10): 2429–2441. doi: 10.1109/TSP.2013.2251339 TAL I and VARDY A. List decoding of polar codes[C]. Proceedings of 2011 IEEE International Symposium on Information Theory Proceedings, St. Petersburg, Russia, 2011: 1–5. ERCAN F, CONDO C, HASHEMI S A, et al. On error-correction performance and implementation of polar code list decoders for 5G[EB/OL]. http://arxiv.org/abs/1708.04706, 2017. NIU Kai and CHEN Kai. CRC-aided decoding of polar codes[J]. IEEE Communications Letters, 2012, 16(10): 1668–1671. doi: 10.1109/LCOMM.2012.090312.121501 ZHOU Huayi, ZHANG Chuan, SONG Wenqing, et al. Segmented CRC-aided SC list polar decoding[C]. Proceedings of the 2016 IEEE 83rd Vehicular Technology Conference, Nanjing, China, 2016: 1–5. HASHEMI S A, CONDO C, and GROSS W J. Simplified successive-cancellation list decoding of polar codes[C]. Proceedings of 2016 IEEE International Symposium on Information Theory, Barcelona, Spain, 2016: 815–819. HASHEMI S A, CONDO C, and GROSS W J. Fast simplified successive-cancellation list decoding of polar codes[C]. Proceedings of 2017 IEEE Wireless Communications and Networking Conference Workshops, San Francisco, USA, 2017: 1–6. LI Bin, SHEN Hui, and TSE D. An adaptive successive cancellation list decoder for polar codes with cyclic redundancy check[J]. IEEE Communications Letters, 2012, 16(12): 2044–2047. doi: 10.1109/LCOMM.2012.111612.121898 MORI R and TANAKA T. Performance of polar codes with the construction using density evolution[J]. IEEE Communications Letters, 2009, 13(7): 519–521. doi: 10.1109/LCOMM.2009.090428 WU Daolong, LI Ying, and SUN Yue. Construction and block error rate analysis of polar codes over AWGN channel based on Gaussian approximation[J]. IEEE Communications Letters, 2014, 18(7): 1099–1102. doi: 10.1109/LCOMM.2014.2325811 SCHURCH C. A partial order for the synthesized channels of a polar code[C]. Proceedings of 2016 IEEE International Symposium on Information Theory, Barcelona, Spain, 2016: 220–224. HE Gaoning, BELFIORE J C, LAND I, et al. Beta-expansion: a theoretical framework for fast and recursive construction of polar codes[C]. Proceedings of 2017 IEEE Global Communications Conference, Singapore, 2017: 1–6. BALATSOUKAS-STIMMING A, PARIZI M B, and BURG A. LLR-based successive cancellation list decoding of polar codes[C]. Proceedings of 2014 IEEE International Conference on Acoustics, Speech and Signal Processing, Florence, Italy, 2014: 3903–3907. VANGALA H, VITERBO E, and HONG Yi. A comparative study of polar code constructions for the AWGN channel[EB/OL]. http://arxiv.org/abs/1501.02473, 2015. -