基于回波序列最小二乘擬合的高分辨率SAR運(yùn)動(dòng)目標(biāo)速度估計(jì)
doi: 10.11999/JEIT180695
-
1.
中國科學(xué)院電子學(xué)研究所 ??北京 ??100190
-
2.
中國科學(xué)院大學(xué) ??北京 ??100049
Velocity Estimation of Moving Targets Based on Least Square Fitting of High-resolution SAR Echo Sequences
-
1.
Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China
-
2.
University of Chinese Academy of Sciences, Beijing 100049, China
-
摘要:
運(yùn)動(dòng)目標(biāo)速度估計(jì)是機(jī)載單天線高分辨率合成孔徑雷達(dá)(SAR)實(shí)現(xiàn)運(yùn)動(dòng)目標(biāo)成像和定位的關(guān)鍵環(huán)節(jié)。針對(duì)現(xiàn)有方法運(yùn)算量大、易受距離徙動(dòng)干擾等缺點(diǎn),該文提出一種基于回波序列最小二乘擬合的速度估計(jì)方法。利用該方法,首先通過包絡(luò)相關(guān)提取相鄰回波序列的距離變化量,然后對(duì)其做最小二乘線性擬合,目標(biāo)的距離向速度和方位向速度可由擬合系數(shù)計(jì)算得到。與傳統(tǒng)方法相比,該方法不僅計(jì)算量小,而且無須先做距離徙動(dòng)校正(RCMC)。該文給出了新方法的數(shù)學(xué)模型和參數(shù)選取原則,分析了該方法的估計(jì)精度、計(jì)算量和適用條件,并通過仿真和實(shí)際數(shù)據(jù)處理驗(yàn)證了該方法的有效性。
-
關(guān)鍵詞:
- 合成孔徑雷達(dá) /
- 運(yùn)動(dòng)目標(biāo)成像 /
- 速度估計(jì) /
- 回波序列 /
- 最小二乘擬合
Abstract:Velocity estimation of moving targets is a key part of ground moving target imaging and positioning in airborne single-antenna high-resolution SAR system. In order to solute the defects of traditional algorithms, such as high computation brought by searching and interpolation and low reliability caused by range cell migration, a novel method based on least square fitting of echo sequence is proposed. Range changes between adjacent echo sequences are extracted using envelope correlation, and coefficients of range change equation are obtained by least square linear fitting, from which radial velocity and along-track velocity can be derived. Compared with the traditional algorithms, the new method has less computation and can work without RCMC. The mathematical model is presented and the principle of parameter selection is provided, and accuracy, computation and applicable conditions of the algorithm are analyzed. The effectiveness of the proposed algorithm is validated by simulation and real data.
-
表 1 雷達(dá)仿真參數(shù)
參數(shù)名稱 參數(shù)值 距離向點(diǎn)數(shù) 2048 方位向點(diǎn)數(shù) 32768 中心頻率(GHz) 15.6 距離向采樣率(GHz) 1 信號(hào)帶寬(MHz) 700 信號(hào)脈寬(μs) 2 飛機(jī)地速(m/s) 80 脈沖重復(fù)頻率(Hz) 1440 中心斜距(km) 15 目標(biāo)1距離向速度(m/s) 3 目標(biāo)1方位向速度(m/s) –20 目標(biāo)2距離向速度(m/s) –10 目標(biāo)2方位向速度(m/s) –10 下載: 導(dǎo)出CSV
表 2 勻速運(yùn)動(dòng)目標(biāo)距離向速度估計(jì)結(jié)果
目標(biāo)編號(hào) Hough變換速度估計(jì)結(jié)果 (m/s) Hough變換估計(jì)相對(duì)誤差(%) 本文算法速度估計(jì)結(jié)果(m/s) 本文算法估計(jì)相對(duì)誤差(%) 目標(biāo)1 3.34 11.50 3.06 2.25 目標(biāo)2 –10.17 1.75 –9.92 0.80 下載: 導(dǎo)出CSV
表 3 勻速運(yùn)動(dòng)目標(biāo)方位向速度估計(jì)結(jié)果
目標(biāo)編號(hào) MD速度估計(jì)結(jié)果(m/s) MD估計(jì)相對(duì)誤差(%) 本文算法速度估計(jì)結(jié)果(m/s) 本文算法估計(jì)相對(duì)誤差(%) 目標(biāo)1 –20.50 2.54 –20.71 3.58 目標(biāo)2 –9.98 0.16 –10.06 0.60 下載: 導(dǎo)出CSV
表 4 算法運(yùn)算時(shí)間(s)
目標(biāo)編號(hào) Hough變換執(zhí)行時(shí)間 MD執(zhí)行時(shí)間 本文算法執(zhí)行時(shí)間 目標(biāo)1 2.96 32.26 0.50 目標(biāo)2 3.44 24.78 0.34 下載: 導(dǎo)出CSV
表 5 加速運(yùn)動(dòng)目標(biāo)距離向速度估計(jì)結(jié)果
目標(biāo)編號(hào) Hough變換速度估計(jì)結(jié)果 (m/s) Hough變換估計(jì)相對(duì)誤差(%) 本文算法速度估計(jì)結(jié)果(m/s) 本文算法估計(jì)相對(duì)誤差(%) 目標(biāo)3 –13.50 35.00 –9.93 0.70 下載: 導(dǎo)出CSV
表 7 加速運(yùn)動(dòng)目標(biāo)方位調(diào)頻率估計(jì)結(jié)果
目標(biāo)編號(hào) MD速度估計(jì)結(jié)果(Hz/s) MD估計(jì)相對(duì)誤差(%) 本文算法速度估計(jì)結(jié)果(Hz/s) 本文算法估計(jì)相對(duì)誤差(%) 目標(biāo)3 444.67 313.3 108.08 0.46 下載: 導(dǎo)出CSV
表 6 加速運(yùn)動(dòng)目標(biāo)方位向速度估計(jì)結(jié)果
目標(biāo)編號(hào) MD 速度估計(jì)結(jié)果(m/s) MD估計(jì)相對(duì)誤差(%) 本文算法速度估計(jì)結(jié)果(m/s) 本文算法估計(jì)相對(duì)誤差(%) 目標(biāo)3 –173.24 1632.40 –45.49 354.90 下載: 導(dǎo)出CSV
表 8 清除地雜波頻譜后的速度估計(jì)結(jié)果
波束角(°) 距離向速度估計(jì)結(jié)果(m/s) 距離向速度估計(jì)相對(duì)誤差(%) 方位向速度估計(jì)結(jié)果(m/s) 方位向速度估計(jì)相對(duì)誤差(%) 1 2.93 2.33 –21.83 9.15 3 3.27 9.00 –23.90 19.50 5 4.01 33.67 –24.93 24.65 下載: 導(dǎo)出CSV
表 9 不同信噪比下的速度估計(jì)結(jié)果
信噪比(dB) 距離向速度估計(jì)結(jié)果(m/s) 距離向速度估計(jì)相對(duì)誤差(%) 方位向速度估計(jì)結(jié)果(m/s) 方位向速度估計(jì)相對(duì)誤差(%) 0 –9.92 0.80 –10.06 0.60 –20 –9.93 0.70 –9.68 3.20 –30 –9.74 2.60 –14.30 43.00 下載: 導(dǎo)出CSV
表 10 實(shí)測數(shù)據(jù)參數(shù)
參數(shù)名稱 參數(shù)值 距離向點(diǎn)數(shù) 733 方位向點(diǎn)數(shù) 32768 中心頻率(GHz) 15.6 距離向采樣率(GHz) 1 信號(hào)帶寬(MHz) 700 信號(hào)脈寬(μs) 60 飛機(jī)地速(m/s) 78 脈沖重復(fù)頻率(Hz) 1400 中心斜距(km) 33 下載: 導(dǎo)出CSV
-
RANEY R K. Synthetic aperture imaging radar and moving targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 1971, AES-7(3): 499–505. doi: 10.1109/TAES.1971.310292 LI Yake, WANG Yanfei, and LIU Chang. Detect and autofocus the moving target by its range walk in time domain[C]. Proceedings of 2011 International Conference on Wireless Communications and Signal Processing, Nanjing, China, 2011: 1-5. doi: 10.1109/WCSP.2011.6096755. 王智睿, 張旭東, 許稼. 基于Radon變換的SAR地面運(yùn)動(dòng)目標(biāo)徑向速度估計(jì)[J]. 清華大學(xué)學(xué)報(bào): 自然科學(xué)版, 2015, 55(8): 860–865. doi: 10.16511/j.cnki.qhdxxb.2015.08.008WANG Zhirui, ZHANG Xudong, and XU Jia. Radial velocity estimation based on Radon transforms for SAR images of moving ground targets[J]. Journal of Tsinghua University:Science and Technology, 2015, 55(8): 860–865. doi: 10.16511/j.cnki.qhdxxb.2015.08.008 SAMCZYNSKI P and KULPA K S. Coherent MapDrift technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(3): 1505–1517. doi: 10.1109/TGRS.2009.2032241 李亞超, 周峰, 邢孟道, 等. 一種直升機(jī)的艦船Dechirp實(shí)測數(shù)據(jù)SAR成像方法[J]. 電子與信息學(xué)報(bào), 2007, 29(8): 1794–1798. doi: 10.3724/SP.J.1146.2005.01535LI Yachao, ZHOU Feng, XING Mengdao, et al. An effective method for ship dechirp data imaging in helicopter SAR system[J]. Journal of Electronics &Information Technology, 2007, 29(8): 1794–1798. doi: 10.3724/SP.J.1146.2005.01535 HUANG Penghui, LIAO Guisheng, YANG Zhiwei, et al. A fast SAR imaging method for ground moving target using a second-order WVD transform[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(4): 1940–1956. doi: 10.1109/TGRS.2015.2490582 ZHOU F, WU R, XING M, et al. Approach for single channel SAR ground moving target imaging and motion parameter estimation[J]. IET Radar, Sonar & Navigation, 2007, 1(1): 59–66. doi: 10.1049/iet-rsn:20060040 YANG Jiefang, ZHANG Yunhua, and KANG Xueyan. A Doppler ambiguity tolerated algorithm for airborne SAR ground moving target imaging and motion parameters estimation[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(12): 2398–2402. doi: 10.1109/LGRS.2015.2478799 KIRSCHT M. Detection and velocity estimation of moving objects in a sequence of single-look SAR images[C]. Proceedings of 1996 International Geoscience and Remote Sensing Symposium, Lincoln, USA, 1996: 333–335. 盛蔚, 毛士藝. 一種合成孔徑雷達(dá)對(duì)地面運(yùn)動(dòng)目標(biāo)成像和精確定位的算法[J]. 電子與信息學(xué)報(bào), 2004, 26(4): 598–606.SHENG Wei and MAO Shiyi. An effective method for ground moving target imaging and location in SAR system[J]. Journal of Electronics &Information Technology, 2004, 26(4): 598–606. WANG Zhirui, XIA Xianggen, XU Jia, et al. Ground moving target imaging based on 2-D velocity search in high resolution SAR[C]. Proceedings of 2017 IEEE Radar Conference, Seattle, USA, 2017: 68–72. GU Dandan, LIANG Zichang, WU Yajun, et al. Efficient motion compensation of moving targets in SAR imaging[C]. Proceedings of 2017 International Applied Computational Electromagnetics Society Symposium, Suzhou, China, 2017: 1–2. SHI Hongyin, YANG Xiaoyan, ZHOU Qiuxiao, et al. SAR slow moving target imaging based on over-sampling smooth algorithm[J]. Chinese Journal of Electronics, 2017, 26(4): 876–882. doi: 10.1049/cje.2017.06.005 SU Jia, TAO Haihong, WANG Ling, et al. Coherently integrated cubic function based Doppler parameters estimation for moving-target imaging[C]. Proceedings of 2017 International Applied Computational Electromagnetics Society Symposium, Suzhou, China, 2017: 1–2. LI Dong, ZHAN Muyang, SU Jia, et al. Performances analysis of coherently integrated CPF for LFM signal under low SNR and its application to ground moving target imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(11): 6402–6419. doi: 10.1109/TGRS.2017.2727508 WANG Hanyun and JIANG Yicheng. Real-time parameter estimation for SAR moving target based on WVD slice and FrFT[J]. Electronics Letters, 2018, 54(1): 47–49. doi: 10.1049/el.2017.1740 LI Zhongyu, WU Junjie, LIU Zhutian, et al. An optimal 2-D spectrum matching method for SAR ground moving target imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(10): 5961–5974. doi: 10.1109/TGRS.2018.2829166 DELISLE G Y and WU Haiqing. Moving target imaging and trajectory computation using ISAR[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(3): 887–899. doi: 10.1109/7.303757 STRUTZ T. Data Fitting and Uncertainty: A Practical Introduction to Weighted Least Squares and Beyond[M]. Wiesbaden, Vieweg + Teubner, 2011: 89–91. 王琦, 王巖飛. 利用短時(shí)FFT的距離-多普勒域SAR運(yùn)動(dòng)目標(biāo)檢測[J]. 電子與信息學(xué)報(bào), 2006, 28(4): 628–631.WANG Qi and WANG Yanfei. Moving target detection with short time FFT for SAR[J]. Journal of Electronics &Information Technology, 2006, 28(4): 628–631. -