一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

一種基于鄰接表的最大頻繁項(xiàng)集挖掘算法

殷茗 王文杰 張煊宇 姜繼嬌

殷茗, 王文杰, 張煊宇, 姜繼嬌. 一種基于鄰接表的最大頻繁項(xiàng)集挖掘算法[J]. 電子與信息學(xué)報(bào), 2019, 41(8): 2009-2016. doi: 10.11999/JEIT180692
引用本文: 殷茗, 王文杰, 張煊宇, 姜繼嬌. 一種基于鄰接表的最大頻繁項(xiàng)集挖掘算法[J]. 電子與信息學(xué)報(bào), 2019, 41(8): 2009-2016. doi: 10.11999/JEIT180692
Ming YIN, Wenjie WANG, Xuanyu ZHANG, Jijiao JIANG. A Maximal Frequent Itemsets Mining Algorithm Based on Adjacency Table[J]. Journal of Electronics & Information Technology, 2019, 41(8): 2009-2016. doi: 10.11999/JEIT180692
Citation: Ming YIN, Wenjie WANG, Xuanyu ZHANG, Jijiao JIANG. A Maximal Frequent Itemsets Mining Algorithm Based on Adjacency Table[J]. Journal of Electronics & Information Technology, 2019, 41(8): 2009-2016. doi: 10.11999/JEIT180692

一種基于鄰接表的最大頻繁項(xiàng)集挖掘算法

doi: 10.11999/JEIT180692
基金項(xiàng)目: 教育部人文與社會(huì)科學(xué)基金(16YJA630068, 18YJA630043),航空科學(xué)基金(2016ZG53071),陜西省自然科學(xué)基礎(chǔ)研究計(jì)劃項(xiàng)目(2018JM7008),陜西省社會(huì)科學(xué)基金(2018S28),西北工業(yè)大學(xué)研究生種子基金(ZZ2018222)
詳細(xì)信息
    作者簡(jiǎn)介:

    殷茗:女,1978年生,博士,副教授,主要研究方向?yàn)槠髽I(yè)信息化、信息管理與信息系統(tǒng)、電子服務(wù)

    王文杰:男,1992年生,碩士,主要研究方向?yàn)閿?shù)據(jù)挖掘、機(jī)器學(xué)習(xí)

    張煊宇:男,1995年生,碩士,主要研究方向?yàn)樾畔⒐芾砼c信息系統(tǒng)

    姜繼嬌:男,1979年生,博士,副教授,主要研究方向?yàn)樾袨榻鹑谂c風(fēng)險(xiǎn)管理

    通訊作者:

    王文杰 wenjie@mail.nwpu.edu.cn

  • 中圖分類號(hào): TP311.5

A Maximal Frequent Itemsets Mining Algorithm Based on Adjacency Table

Funds: Ministry of Education Humanities and Social Science Foundation (16YJA630068, 18YJA630043), Aeronautical Science Fund of China (2016ZG53071), Shaanxi Natural Science Basic Research Project (2018JM7008), Shaanxi Social Science Foundation Project (2018S28), Graduate Student Seed Fund Project of Northwestern Polytechnical University (ZZ2018222)
  • 摘要: 針對(duì)Apriori算法與FP-Growth算法在最大頻繁項(xiàng)集挖掘過(guò)程中存在的運(yùn)行低效、內(nèi)存消耗大、難以適應(yīng)稠密數(shù)據(jù)集的處理、影響大數(shù)據(jù)價(jià)值挖掘時(shí)效等問(wèn)題,該文提出一種基于鄰接表的最大頻繁項(xiàng)集挖掘算法。該算法只需遍歷數(shù)據(jù)庫(kù)一次,同時(shí)用哈希表對(duì)鄰接表進(jìn)行輔助存儲(chǔ),減小了遍歷的空間規(guī)模。理論分析與實(shí)驗(yàn)結(jié)果表明,該算法時(shí)間與空間復(fù)雜度較低,提高了最大頻繁項(xiàng)集挖掘速率,尤其在處理稠密數(shù)據(jù)集時(shí)具有較好的優(yōu)越性。
  • 圖  1  頂頭表與FP-Tree

    圖  2  基于鄰接表的最大頻繁項(xiàng)集挖掘過(guò)程

    圖  3  由數(shù)據(jù)集生成鄰接表

    圖  4  處理稀疏與稠密數(shù)據(jù)集不同事務(wù)數(shù)量的效率對(duì)比圖

    圖  5  處理稀疏與稠密數(shù)據(jù)集不同支持度計(jì)數(shù)的效率對(duì)比圖

    表  1  事務(wù)數(shù)據(jù)庫(kù)

    TID項(xiàng)
    T100B, C, E
    T200F, B
    T300C, A, D
    T400D, B, C, A, E
    T500C, E, D
    T600E, F
    下載: 導(dǎo)出CSV

    表  2  3種算法的最大頻繁項(xiàng)集挖掘結(jié)果

    AprioriFP-Growth基于鄰接表的算法支持度
    (A,C:2)(A,C:2)(C,A:2)0.3
    (D,A:2)(A,D:2)(A,D:2)0.3
    (B,C:2)(B,C:2)(B,C:2)0.3
    (E,B:2)(B,E:2)(B,E:2)0.3
    (D,C:3)(D,C:3)(C,D:3)0.5
    (C,E:3)(E,C:3)(C,E:3)0.5
    (D,E:2)(D,E:2)(E,D:2)0.3
    (D,A,C:2)(A,C,D:2)(C,A,D:2)0.3
    (E,C,B:2)(B,C,E:2)(B,C,E:2)0.3
    (D,C,E:2)(D,C,E:2)(C,D,E:2)0.3
    下載: 導(dǎo)出CSV
  • WU Xindong, KUMAR V, QUINLAN J R, et al. Top 10 algorithms in data mining[J]. Knowledge and Information Systems, 2008, 14(1): 1–37. doi: 10.1007/s10115-007-0114-2
    FASIH H and SHAHRAKI M H N. Incremental mining maximal frequent patterns from univariate uncertain data[J]. Knowledge-Based Systems, 2018, 152: 40–50. doi: 10.1016/j.knosys.2018.04.001
    易彤, 徐寶文, 吳方君. 一種基于FP樹(shù)的挖掘關(guān)聯(lián)規(guī)則的增量更新算法[J]. 計(jì)算機(jī)學(xué)報(bào), 2004, 27(5): 703–710. doi: 10.3321/j.issn:0254-4164.2004.05.017

    YI Tong, XU Baowen, and WU Fangjun. A FP-tree based incremental updating algorithm for mining association rules[J]. Chinese Journal of Computers, 2004, 27(5): 703–710. doi: 10.3321/j.issn:0254-4164.2004.05.017
    陳安龍, 唐常杰, 陶宏才, 等. 基于極大團(tuán)和FP-Tree的挖掘關(guān)聯(lián)規(guī)則的改進(jìn)算法[J]. 軟件學(xué)報(bào), 2004, 15(8): 1198–1207. doi: 10.13328/j.cnki.jos.2004.08.012

    CHEN Anlong, TANG Changjie, TAO Hongcai, et al. An improved algorithm based on maximum clique and FP-Tree for mining association rules[J]. Journal of Software, 2004, 15(8): 1198–1207. doi: 10.13328/j.cnki.jos.2004.08.012
    BUI H, VO B, NGUYEN H, et al. A weighted N-list-based method for mining frequent weighted itemsets[J]. Expert Systems with Applications, 2018, 96: 388–405. doi: 10.1016/j.eswa.2017.10.039
    AGRAWAL R and SRIKANT R. Fast algorithms for mining association rules in large databases[C]. The 20th International Conference on Very Large Data Bases, San Francisco, 1994: 487–499.
    APILETTI D, BARALIS E, CERQUITELLI T, et al. Frequent itemsets mining for big data: A comparative analysis[J]. Big Data Research, 2017, 9: 67–83. doi: 10.1016/j.bdr.2017.06.006
    肖波, 徐前方, 藺志青, 等. 可信關(guān)聯(lián)規(guī)則及其基于極大團(tuán)的挖掘算法[J]. 軟件學(xué)報(bào), 2008, 19(10): 2597–2610.

    XIAO Bo, XU Qianfang, LIN Zhiqing, et al. Credible association rule and its mining algorithm based on maximum clique[J]. Journal of Software, 2008, 19(10): 2597–2610.
    HAN Jiawei, PEI Jian, and YIN Yiwen. Mining frequent patterns without candidate generation[C]. The 2000 ACM SIGMOD International Conference on Management of Data, Dallas, 2000: 1–12. doi: 10.1145/342009.335372.
    KARIM R, COCHEZ M, BEYAN O D, et al. Mining maximal frequent patterns in transactional databases and dynamic data streams: A spark-based approach[J]. Information Sciences, 2018, 432: 278–300. doi: 10.1016/j.ins.2017.11.064
    吉根林, 楊明, 宋余慶, 等. 最大頻繁項(xiàng)目集的快速更新[J]. 計(jì)算機(jī)學(xué)報(bào), 2005, 28(1): 128–135. doi: 10.3321/j.issn:0254-4164.2005.01.016

    JI Genlin, YANG Ming, SONG Yuqing, et al. Fast updating maximum frequent itemsets[J]. Chinese Journal of Computers, 2005, 28(1): 128–135. doi: 10.3321/j.issn:0254-4164.2005.01.016
    宋余慶, 朱玉全, 孫志揮, 等. 基于FP-Tree的最大頻繁項(xiàng)目集挖掘及更新算法[J]. 軟件學(xué)報(bào), 2003, 14(9): 1586–1592. doi: 10.13328/j.cnki.jos.2003.09.012

    SONG Yuqing, ZHU Yuquan, SUN Zhihui, et al. An algorithm and its updating algorithm based on FP-Tree for mining maximum frequent itemsets[J]. Journal of Software, 2003, 14(9): 1586–1592. doi: 10.13328/j.cnki.jos.2003.09.012
    VIJAYARANI S and SHARMILA S. Comparative analysis of association rule mining algorithms[C]. 2016 International Conference on Inventive Computation Technologies, Coimbatore, 2016: 1–6. doi: 10.1109/INVENTIVE.2016.7830203.
    LIU Li, YU Shuo, WEI Xiang, et al. An improved Apriori-based algorithm for friends recommendation in microblog[J]. International Journal of Communication Systems, 2018, 31(2): e3453. doi: 10.1002/dac.3453
    連志春, 伊鳳新. 一種改進(jìn)的頻繁模式樹(shù)生長(zhǎng)算法[J]. 應(yīng)用科技, 2008, 35(6): 47–51. doi: 10.3969/j.issn.1009-671X.2008.06.012

    LIAM Zhichun and YI Fengxin. An improved frequent pattern tree growth algorithm[J]. Applied Science and Technology, 2008, 35(6): 47–51. doi: 10.3969/j.issn.1009-671X.2008.06.012
  • 加載中
圖(5) / 表(2)
計(jì)量
  • 文章訪問(wèn)數(shù):  2009
  • HTML全文瀏覽量:  1251
  • PDF下載量:  80
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2018-07-08
  • 修回日期:  2019-05-17
  • 網(wǎng)絡(luò)出版日期:  2019-05-29
  • 刊出日期:  2019-08-01

目錄

    /

    返回文章
    返回