一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗證碼

大規(guī)模MIMO系統(tǒng)上行鏈路時間-空間結(jié)構(gòu)信道估計算法

路新華 MANCHóNCarles Navarro 王忠勇 張傳宗

路新華, MANCHóNCarles Navarro, 王忠勇, 張傳宗. 大規(guī)模MIMO系統(tǒng)上行鏈路時間-空間結(jié)構(gòu)信道估計算法[J]. 電子與信息學(xué)報, 2020, 42(2): 519-525. doi: 10.11999/JEIT180676
引用本文: 路新華, MANCHóNCarles Navarro, 王忠勇, 張傳宗. 大規(guī)模MIMO系統(tǒng)上行鏈路時間-空間結(jié)構(gòu)信道估計算法[J]. 電子與信息學(xué)報, 2020, 42(2): 519-525. doi: 10.11999/JEIT180676
Xinhua LU, Carles Navarro MANCHóN, Zhongyong WANG, Chuanzong ZHANG. Channel Estimation Algorithm Using Temporal-spatial Structure for Up-link of Massive MIMO Systems[J]. Journal of Electronics & Information Technology, 2020, 42(2): 519-525. doi: 10.11999/JEIT180676
Citation: Xinhua LU, Carles Navarro MANCHóN, Zhongyong WANG, Chuanzong ZHANG. Channel Estimation Algorithm Using Temporal-spatial Structure for Up-link of Massive MIMO Systems[J]. Journal of Electronics & Information Technology, 2020, 42(2): 519-525. doi: 10.11999/JEIT180676

大規(guī)模MIMO系統(tǒng)上行鏈路時間-空間結(jié)構(gòu)信道估計算法

doi: 10.11999/JEIT180676
基金項目: 國家自然科學(xué)基金(61571402, 61501404, 61640003)
詳細(xì)信息
    作者簡介:

    路新華:男,1980年生,講師,博士生,研究方向為大規(guī)模MIMO、信道估計、變分貝葉斯推理和狄利克雷過程

    MANCHóNCarles Navarro:男,副教授,研究方向為無線通信中的統(tǒng)計信號處理,包括聯(lián)合信道估計和檢測、稀疏信號估計和重構(gòu)、多天線信號處理技術(shù)等

    王忠勇:男,1965年生,教授,研究方向為通信系統(tǒng)及其信號處理、嵌入式系統(tǒng)等

    張傳宗:男,1982年生,副教授,研究方向為移動通信系統(tǒng)和接收機(jī)的設(shè)計、變分推理、因子圖與消息傳遞算法

    通訊作者:

    王忠勇 zywangzzu@gmail.com

  • 中圖分類號: TN92

Channel Estimation Algorithm Using Temporal-spatial Structure for Up-link of Massive MIMO Systems

Funds: The National Natural Science Foundation of China (61571402, 61501404, 61640003)
  • 摘要:

    針對大規(guī)模多入多出(MIMO)系統(tǒng)上行鏈路非平穩(wěn)空間相關(guān)信道的估計問題,該文利用信道的時間-空間2維稀疏結(jié)構(gòu)信息,應(yīng)用狄利克雷過程(DP)和變分貝葉斯推理(VBI),設(shè)計了一種低導(dǎo)頻開銷和計算復(fù)雜度的信道估計迭代算法,提高了信道估計精度。由于平穩(wěn)空間相關(guān)信道難以適用于大規(guī)模MIMO系統(tǒng),該文借助于狄利克雷過程構(gòu)建了非平穩(wěn)空間相關(guān)信道先驗?zāi)P停蓪⒕哂锌臻g關(guān)聯(lián)的多個物理信道映射為具有相同時延結(jié)構(gòu)的概率信道,并應(yīng)用變分貝葉斯推理設(shè)計了低導(dǎo)頻開銷和計算復(fù)雜度的信道估計迭代算法。實驗結(jié)果驗證了所提算法的有效性,且具有對系統(tǒng)關(guān)鍵參數(shù)魯棒性的優(yōu)點。

  • 圖  1  大規(guī)模MIMO系統(tǒng)上行鏈路信道分層貝葉斯圖模型

    圖  2  信道估計均方誤差隨信噪比變化曲線圖

    圖  3  信道估計均方誤差隨帶寬變化曲線圖

    表  1  信道估計算法的計算復(fù)雜度

    算法復(fù)雜度
    本文方法$\cal{O}\left( {R{L^{\rm{2}}}} \right)$
    FSBL$\cal{O}\left( {R{N_{\rm{p}}}L} \right)$
    BSBL$\cal{O}\left( {{{\left( {RL} \right)}^3}} \right)$
    SABMP$\cal{O}\left( {R{N_{\rm{p}}}{L^2}} \right)$
    下載: 導(dǎo)出CSV

    表  2  大規(guī)模MIMO-OFDM系統(tǒng)參數(shù)

    參數(shù)名參數(shù)意義數(shù)值
    R基站側(cè)天線數(shù)128
    fc載波中心頻率2.6 GHz
    NOFDM總子載波數(shù)1024
    Np信道估計占用子載波數(shù)64
    BW用戶帶寬10~100 MHz
    QQAM調(diào)制階數(shù)4
    L信道抽頭個數(shù)64
    Ip多徑總徑數(shù)20
    下載: 導(dǎo)出CSV
  • MARZETTA T L. Noncooperative cellular wireless with unlimited numbers of base station antennas[J]. IEEE Transactions on Wireless Communications, 2010, 9(11): 3590–3600. doi: 10.1109/TWC.2010.092810.091092
    RUSEK F, PERSSON D, LAU B K, et al. Scaling up MIMO: opportunities and challenges with very large array[J]. IEEE Signal Processing Magazine, 2013, 30(1): 40–60. doi: 10.1109/MSP.2011.2178495
    PAYAMI S and TUFVESSON F. Channel measurements and analysis for very large array systems at 2.6 GHz[C]. The 6th European Conference on Antennas and Propagation, Prague, Czech Republic, 2012: 433–437.
    GAO Xiang, TUFVESSON F, and EDFORS O. Massive MIMO channels - Measurements and models[C]. Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2013: 280–284.
    WU Shangbin, WANG Chengxiang, HAAS H, et al. A Non-stationary wideband channel model for massive MIMO communication systems[J]. IEEE Transactions on Wireless Communications, 2015, 14(3): 1434–1446. doi: 10.1109/TWC.2014.2366153
    NGUYEN S. Compressive sensing for multi-channel and large-scale MIMO networks[D]. [Ph.D. dissertation], Concordia University, 2013.
    QI Chenhao, HUANG Yongming, JIN Shi, et al. Sparse channel estimation based on compressed sensing for massive MIMO systems[C]. 2015 IEEE International Conference on Communications, London, UK, 2015: 4558–4563.
    CHEN Lei, LIU An, and YUAN Xiaojun. Structured turbo compressed sensing for massive MIMO channel estimation using a Markov prior[J]. IEEE Transactions on Vehicular Technology, 2018, 67(5): 4635–4639. doi: 10.1109/TVT.2017.2787708
    HOU Weikun and LIM C W. Structured compressive channel estimation for large-scale MISO-OFDM systems[J]. IEEE Communications Letters, 2014, 18(5): 765–768. doi: 10.1109/LCOMM.2014.030714.132630.
    NAN Yang, ZHANG Li, and SUN Xin. Weighted compressive sensing based uplink channel estimation for time division duplex massive Multi-Input Multi-Output systems[J]. IET Communications, 2017, 11(3): 355–361. doi: 10.1049/iet-com.2016.0625
    MASOOD M, AFIFY L H, and AL-NAFFOURI T Y. Efficient coordinated recovery of sparse channels in massive MIMO[J]. IEEE Transactions on Signal Processing, 2015, 63(1): 104–118. doi: 10.1109/TSP.2014.2369005
    PEDERSEN N L, MANCHóN C N, and FLEURY B H. A fast iterative Bayesian inference algorithm for sparse channel estimation[C]. 2013 IEEE International Conference on Communications, Budapest, Hungary, 2013: 4591–4596.
    MA Jianpeng, LI Hongyan, ZHANG Shun, et al. Sparse Bayesian learning for the channel statistics of the massive MIMO systems[C]. 2017 IEEE Global Communications Conference, Singapore, 2017: 1–6.
    GUI Guan, XU Li, and SHAN Lin. Block Bayesian sparse learning algorithms with application to estimating channels in OFDM systems[C]. 2014 International Symposium on Wireless Personal Multimedia Communications, Sydney, Australia, 2014: 238–242.
    CHENG Xiantao, SUN Jingjing, and LI Shaoqian. Channel estimation for FDD multi-user massive MIMO: a variational Bayesian inference-based approach[J]. IEEE Transactions on Wireless Communications, 2017, 16(11): 7590–7602. doi: 10.1109/TWC.2017.2751046
    TIPPING M. Sparse Bayesian learning and the relevance vector machine[J]. The Journal of Machine Learning Research, 2001, 1: 211–244. doi: 10.1162/15324430152748236
    BLEI D M and JORDAN M I. Variational inference for dirichlet process mixtures[J]. Bayesian Analysis, 2006, 1(1): 121–143. doi: 10.1214/06-BA104
    梅素玉, 王飛, 周水庚. 狄利克雷過程混合模型、擴(kuò)展模型及應(yīng)用[J]. 科學(xué)通報, 2012, 57(34): 3243–3257.

    MEI Suyu, WANG Fei, and ZHOU Shuigeng. Dirichlet process mixture model, extensions and applications[J]. Chinese Science Bulletin (Chinese Version), 2012, 57(34): 3243–3257.
    WANG Lu, ZHAO Lifan, BI Guoan, et al. Novel wideband DOA estimation based on sparse bayesian learning with dirichlet process priors[J]. IEEE Transactions on Signal Processing, 2016, 64(2): 275–289. doi: 10.1109/TSP.2015.2481790
    TSE D and VISWANATH P. Fundamentals of Wireless Communication[M]. Cambridge: Cambridge University, 2004: 32–50, 348–352.
  • 加載中
圖(3) / 表(2)
計量
  • 文章訪問數(shù):  2834
  • HTML全文瀏覽量:  1560
  • PDF下載量:  107
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2018-07-06
  • 修回日期:  2019-02-02
  • 網(wǎng)絡(luò)出版日期:  2019-05-21
  • 刊出日期:  2020-02-19

目錄

    /

    返回文章
    返回