大規(guī)模MIMO系統(tǒng)上行鏈路時間-空間結(jié)構(gòu)信道估計算法
doi: 10.11999/JEIT180676
-
1.
鄭州大學(xué)信息工程學(xué)院 ??鄭州 ??450001
-
2.
南陽理工學(xué)院通信信號處理工程技術(shù)研究中心 南陽 473004
-
3.
Department of Electronic Systems, Aalborg University, Aalborg 9220
Channel Estimation Algorithm Using Temporal-spatial Structure for Up-link of Massive MIMO Systems
-
1.
School of Information Engineering, Zhengzhou University, Zhengzhou 450001, China
-
2.
Communication and Signal Processing RC, Nanyang Institute of Technology, Nanyang 473004, China
-
3.
Department of Electronic Systems, Aalborg University, Aalborg 9220, Denmark
-
摘要:
針對大規(guī)模多入多出(MIMO)系統(tǒng)上行鏈路非平穩(wěn)空間相關(guān)信道的估計問題,該文利用信道的時間-空間2維稀疏結(jié)構(gòu)信息,應(yīng)用狄利克雷過程(DP)和變分貝葉斯推理(VBI),設(shè)計了一種低導(dǎo)頻開銷和計算復(fù)雜度的信道估計迭代算法,提高了信道估計精度。由于平穩(wěn)空間相關(guān)信道難以適用于大規(guī)模MIMO系統(tǒng),該文借助于狄利克雷過程構(gòu)建了非平穩(wěn)空間相關(guān)信道先驗?zāi)P停蓪⒕哂锌臻g關(guān)聯(lián)的多個物理信道映射為具有相同時延結(jié)構(gòu)的概率信道,并應(yīng)用變分貝葉斯推理設(shè)計了低導(dǎo)頻開銷和計算復(fù)雜度的信道估計迭代算法。實驗結(jié)果驗證了所提算法的有效性,且具有對系統(tǒng)關(guān)鍵參數(shù)魯棒性的優(yōu)點。
-
關(guān)鍵詞:
- 大規(guī)模 MIMO /
- 非平穩(wěn)信道 /
- 時間-空間 /
- 狄利克雷過程 /
- 變分貝葉斯推理
Abstract:To deal with the estimation problem of non-stationary channel in massive Multiple-Input Multiple-Output (MIMO) up-link, the 2D channels’ sparse structure information in temporal-spatial domain is used, to design an iterative channel estimation algorithm based on Dirichlet Process (DP) and Variational Bayesian Inference (VBI), which can improve the accuracy under a lower pilot overhead and computation complexity. On account of that the stationary channel models is not suitable for massive MIMO systems anymore, a non-stationary channel prior model utilizing Dirichlet Process is constructed, which can map the physical spatial correlation channels to a probabilistic channel with the same sparse temporal vector. By applying VBI technology, a channel estimation iteration algorithm with low pilot overhead and complexity is designed. Experiment results show the proposed channel method has a better performance on the estimation accuracy than the state-of-art method, meanwhile it works robustly against the dynamic system key parameters.
-
表 1 信道估計算法的計算復(fù)雜度
算法 復(fù)雜度 本文方法 $\cal{O}\left( {R{L^{\rm{2}}}} \right)$ FSBL $\cal{O}\left( {R{N_{\rm{p}}}L} \right)$ BSBL $\cal{O}\left( {{{\left( {RL} \right)}^3}} \right)$ SABMP $\cal{O}\left( {R{N_{\rm{p}}}{L^2}} \right)$ 下載: 導(dǎo)出CSV
表 2 大規(guī)模MIMO-OFDM系統(tǒng)參數(shù)
參數(shù)名 參數(shù)意義 數(shù)值 R 基站側(cè)天線數(shù) 128 fc 載波中心頻率 2.6 GHz N OFDM總子載波數(shù) 1024 Np 信道估計占用子載波數(shù) 64 BW 用戶帶寬 10~100 MHz Q QAM調(diào)制階數(shù) 4 L 信道抽頭個數(shù) 64 Ip 多徑總徑數(shù) 20 下載: 導(dǎo)出CSV
-
MARZETTA T L. Noncooperative cellular wireless with unlimited numbers of base station antennas[J]. IEEE Transactions on Wireless Communications, 2010, 9(11): 3590–3600. doi: 10.1109/TWC.2010.092810.091092 RUSEK F, PERSSON D, LAU B K, et al. Scaling up MIMO: opportunities and challenges with very large array[J]. IEEE Signal Processing Magazine, 2013, 30(1): 40–60. doi: 10.1109/MSP.2011.2178495 PAYAMI S and TUFVESSON F. Channel measurements and analysis for very large array systems at 2.6 GHz[C]. The 6th European Conference on Antennas and Propagation, Prague, Czech Republic, 2012: 433–437. GAO Xiang, TUFVESSON F, and EDFORS O. Massive MIMO channels - Measurements and models[C]. Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2013: 280–284. WU Shangbin, WANG Chengxiang, HAAS H, et al. A Non-stationary wideband channel model for massive MIMO communication systems[J]. IEEE Transactions on Wireless Communications, 2015, 14(3): 1434–1446. doi: 10.1109/TWC.2014.2366153 NGUYEN S. Compressive sensing for multi-channel and large-scale MIMO networks[D]. [Ph.D. dissertation], Concordia University, 2013. QI Chenhao, HUANG Yongming, JIN Shi, et al. Sparse channel estimation based on compressed sensing for massive MIMO systems[C]. 2015 IEEE International Conference on Communications, London, UK, 2015: 4558–4563. CHEN Lei, LIU An, and YUAN Xiaojun. Structured turbo compressed sensing for massive MIMO channel estimation using a Markov prior[J]. IEEE Transactions on Vehicular Technology, 2018, 67(5): 4635–4639. doi: 10.1109/TVT.2017.2787708 HOU Weikun and LIM C W. Structured compressive channel estimation for large-scale MISO-OFDM systems[J]. IEEE Communications Letters, 2014, 18(5): 765–768. doi: 10.1109/LCOMM.2014.030714.132630. NAN Yang, ZHANG Li, and SUN Xin. Weighted compressive sensing based uplink channel estimation for time division duplex massive Multi-Input Multi-Output systems[J]. IET Communications, 2017, 11(3): 355–361. doi: 10.1049/iet-com.2016.0625 MASOOD M, AFIFY L H, and AL-NAFFOURI T Y. Efficient coordinated recovery of sparse channels in massive MIMO[J]. IEEE Transactions on Signal Processing, 2015, 63(1): 104–118. doi: 10.1109/TSP.2014.2369005 PEDERSEN N L, MANCHóN C N, and FLEURY B H. A fast iterative Bayesian inference algorithm for sparse channel estimation[C]. 2013 IEEE International Conference on Communications, Budapest, Hungary, 2013: 4591–4596. MA Jianpeng, LI Hongyan, ZHANG Shun, et al. Sparse Bayesian learning for the channel statistics of the massive MIMO systems[C]. 2017 IEEE Global Communications Conference, Singapore, 2017: 1–6. GUI Guan, XU Li, and SHAN Lin. Block Bayesian sparse learning algorithms with application to estimating channels in OFDM systems[C]. 2014 International Symposium on Wireless Personal Multimedia Communications, Sydney, Australia, 2014: 238–242. CHENG Xiantao, SUN Jingjing, and LI Shaoqian. Channel estimation for FDD multi-user massive MIMO: a variational Bayesian inference-based approach[J]. IEEE Transactions on Wireless Communications, 2017, 16(11): 7590–7602. doi: 10.1109/TWC.2017.2751046 TIPPING M. Sparse Bayesian learning and the relevance vector machine[J]. The Journal of Machine Learning Research, 2001, 1: 211–244. doi: 10.1162/15324430152748236 BLEI D M and JORDAN M I. Variational inference for dirichlet process mixtures[J]. Bayesian Analysis, 2006, 1(1): 121–143. doi: 10.1214/06-BA104 梅素玉, 王飛, 周水庚. 狄利克雷過程混合模型、擴(kuò)展模型及應(yīng)用[J]. 科學(xué)通報, 2012, 57(34): 3243–3257.MEI Suyu, WANG Fei, and ZHOU Shuigeng. Dirichlet process mixture model, extensions and applications[J]. Chinese Science Bulletin (Chinese Version) , 2012, 57(34): 3243–3257. WANG Lu, ZHAO Lifan, BI Guoan, et al. Novel wideband DOA estimation based on sparse bayesian learning with dirichlet process priors[J]. IEEE Transactions on Signal Processing, 2016, 64(2): 275–289. doi: 10.1109/TSP.2015.2481790 TSE D and VISWANATH P. Fundamentals of Wireless Communication[M]. Cambridge: Cambridge University, 2004: 32–50, 348–352. -