一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于深度卷積神經(jīng)網(wǎng)絡(luò)和多核學(xué)習(xí)的遙感圖像分類方法

王鑫 李可 寧晨 黃鳳辰

王鑫, 李可, 寧晨, 黃鳳辰. 基于深度卷積神經(jīng)網(wǎng)絡(luò)和多核學(xué)習(xí)的遙感圖像分類方法[J]. 電子與信息學(xué)報(bào), 2019, 41(5): 1098-1105. doi: 10.11999/JEIT180628
引用本文: 王鑫, 李可, 寧晨, 黃鳳辰. 基于深度卷積神經(jīng)網(wǎng)絡(luò)和多核學(xué)習(xí)的遙感圖像分類方法[J]. 電子與信息學(xué)報(bào), 2019, 41(5): 1098-1105. doi: 10.11999/JEIT180628
Xin WANG, Ke LI, Chen NING, Fengchen HUANG. Remote Sensing Image Classification Method Based on Deep Convolution Neural Network and Multi-kernel Learning[J]. Journal of Electronics & Information Technology, 2019, 41(5): 1098-1105. doi: 10.11999/JEIT180628
Citation: Xin WANG, Ke LI, Chen NING, Fengchen HUANG. Remote Sensing Image Classification Method Based on Deep Convolution Neural Network and Multi-kernel Learning[J]. Journal of Electronics & Information Technology, 2019, 41(5): 1098-1105. doi: 10.11999/JEIT180628

基于深度卷積神經(jīng)網(wǎng)絡(luò)和多核學(xué)習(xí)的遙感圖像分類方法

doi: 10.11999/JEIT180628
基金項(xiàng)目: 教育部中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金(2019B15314),國(guó)家自然科學(xué)基金(61603124),江蘇省“六大人才高峰”高層次人才項(xiàng)目(XYDXX-007),江蘇省“333高層次人才培養(yǎng)工程”,江蘇政府留學(xué)獎(jiǎng)學(xué)金項(xiàng)目
詳細(xì)信息
    作者簡(jiǎn)介:

    王鑫:女,1981年生,副教授,研究方向?yàn)閳D像處理、模式識(shí)別、計(jì)算機(jī)視覺、機(jī)器學(xué)習(xí)

    李可:女,1996年生,碩士生,研究方向?yàn)樯疃葘W(xué)習(xí)理論

    寧晨:男,1978年生,講師,研究方向?yàn)闄C(jī)器學(xué)習(xí)和模式識(shí)別

    黃鳳辰:男,1964年生,副教授,研究方向?yàn)閳D像處理和分析

    通訊作者:

    王鑫 wang_xin@hhu.edu.cn

  • 中圖分類號(hào): TP751

Remote Sensing Image Classification Method Based on Deep Convolution Neural Network and Multi-kernel Learning

Funds: Fundamental Research Funds for the Central Universities (2019B15314), The National Natural Science Foundation of China (61603124), Six Talents Peak Project of Jiangsu Province (XYDXX-007), 333 High-Level Talent Training Program of Jiangsu Province, Jiangsu Province Government Scholarship for Studying Abroad
  • 摘要:

    為解決傳統(tǒng)遙感圖像分類方法特征提取過(guò)程復(fù)雜、特征表現(xiàn)力不強(qiáng)等問(wèn)題,該文提出一種基于深度卷積神經(jīng)網(wǎng)絡(luò)和多核學(xué)習(xí)的高分辨率遙感圖像分類方法。首先基于深度卷積神經(jīng)網(wǎng)絡(luò)對(duì)遙感圖像數(shù)據(jù)集進(jìn)行訓(xùn)練,學(xué)習(xí)得到兩個(gè)全連接層的輸出將作為遙感圖像的兩種高層特征;然后采用多核學(xué)習(xí)理論訓(xùn)練適合這兩種高層特征的核函數(shù),并將它們映射到高維空間,實(shí)現(xiàn)兩種高層特征在高維空間的自適應(yīng)融合;最后在多核融合特征的基礎(chǔ)上,設(shè)計(jì)一種基于多核學(xué)習(xí)-支持向量機(jī)的遙感圖像分類器,對(duì)遙感圖像進(jìn)行精確分類。實(shí)驗(yàn)結(jié)果表明,與目前已有的基于深度學(xué)習(xí)的遙感圖像分類方法相比,該算法在分類準(zhǔn)確率、誤分類率和Kappa系數(shù)等性能指標(biāo)上均有所提升,在實(shí)驗(yàn)測(cè)試集上3個(gè)指標(biāo)分別達(dá)到了96.43%, 3.57%和96.25%,取得了令人滿意的結(jié)果。

  • 圖  1  本文算法的框圖

    圖  2  搭建的7層卷積神經(jīng)網(wǎng)絡(luò)

    圖  3  21類高分辨率遙感圖像示例

    圖  4  conv1中96個(gè)卷積核可視化結(jié)果

    圖  5  各卷積層學(xué)習(xí)得到的特征圖

    圖  6  3種算法的分類混淆矩陣

    表  1  3種算法各分類性能指標(biāo)值

    指標(biāo)算法1算法2本文算法
    Ac0.88080.93370.9643
    Er0.11920.06630.0357
    Kappa系數(shù)0.87480.93040.9625
    下載: 導(dǎo)出CSV
  • WANG Xin, SHEN Siqiu, NING Chen, et al. Multi-class remote sensing objects recognition based on discriminative sparse representation[J]. Applied Optics, 2016, 55(6): 1381–1394. doi: 10.1364/ao.55.001381
    WANG Xin, XIONG Xingnan, NING Chen, et al. Integration of heterogeneous features for remote sensing scene classification[J]. Journal of Applied Remote Sensing, 2018, 12(1): 15–23. doi: 10.1117/1.jrs.12.015023
    NING Chen, LIU Wenbo, ZHANG Gong, et al. Enhanced synthetic aperture radar automatic target recognition method based on novel features[J]. Applied Optics, 2016, 55(31): 8893–8904. doi: 10.1364/ao.55.008893
    馮子勇. 基于深度學(xué)習(xí)的圖像特征學(xué)習(xí)和分類方法的研究及應(yīng)用[D]. [博士論文], 華南理工大學(xué), 2016.

    FENG Ziyong. Research and application of image feature learning and classification methods based on deep learning[D]. [Ph.D. dissertation], South China University of Technology, 2016.
    林妙真. 基于深度學(xué)習(xí)的人臉識(shí)別研究[D]. [碩士論文], 大連理工大學(xué), 2013.

    LIN Miaozhen. Research on face recognition based on deep learning[D]. [Master dissertation], Dalian University of Technology, 2013.
    奚雪峰, 周國(guó)棟. 面向自然語(yǔ)言處理的深度學(xué)習(xí)研究[J]. 自動(dòng)化學(xué)報(bào), 2016, 42(10): 1445–1465. doi: 10.16383/j.aas.2016.c150682

    XI Xuefeng and ZHOU Guodong. A survey on learning for natural language processing[J]. Acta Automatica Sinica, 2016, 42(10): 1445–1465. doi: 10.16383/j.aas.2016.c150682
    張建華. 基于深度學(xué)習(xí)的語(yǔ)音識(shí)別應(yīng)用研究[D]. [碩士論文], 北京郵電大學(xué), 2015.

    ZHANG Jianhua. Research into speech recognition application based on deep learning[D]. [Master dissertation], Beijing University of Posts and Telecommunications, 2015.
    劉大偉, 韓玲, 韓曉勇. 基于深度學(xué)習(xí)的高分辨率遙感影像分類研究[J]. 光學(xué)學(xué)報(bào), 2016, 36(4): 306–314. doi: 10.3788/AOS201636.0428001

    LIU Dawei, HAN Ling, and HAN Xiaoyong. High spatial resolution remote sensing image classification based on deep learning[J]. Acta Optica Sinica, 2016, 36(4): 306–314. doi: 10.3788/AOS201636.0428001
    曲景影, 孫顯, 高鑫. 基于CNN模型的高分辨率遙感圖像目標(biāo)識(shí)別[J]. 國(guó)外電子測(cè)量技術(shù), 2016, 35(8): 45–50. doi: 10.19652/j.cnki.femt.2016.08.011

    QU Xianying, SUN Xian, and GAO Xin. Remote sensing image target recognition based on CNN[J]. Foreign Electronic Measurement Technology, 2016, 35(8): 45–50. doi: 10.19652/j.cnki.femt.2016.08.011
    周敏, 史振威, 丁火平. 遙感圖像飛機(jī)目標(biāo)分類的卷積神經(jīng)網(wǎng)絡(luò)方法[J]. 中國(guó)圖象圖形學(xué)報(bào), 2017, 22(5): 702–708. doi: 10.11834/jig.160595

    ZHOU Min, SHI Zhenwei, and DING Huoping. Aircraft classification in remote-sensing images using convolutional neural networks[J]. Journal of Image and Graphics, 2017, 22(5): 702–708. doi: 10.11834/jig.160595
    黃潔, 姜志國(guó), 張浩鵬, 等. 基于卷積神經(jīng)網(wǎng)絡(luò)的遙感圖像艦船目標(biāo)檢測(cè)[J]. 北京航空航天大學(xué)學(xué)報(bào), 2017, 43(9): 1841–1848. doi: 10.13700/j.bh.1001-5965.2016.0755

    HUANG Jie, JIANG Zhiguo, ZHANG Haopeng, et al. Ship object detection in remote sensing images using convolutional neural networks[J]. Journal of Beijing University of Aeronautics and Astronsutics, 2017, 43(9): 1841–1848. doi: 10.13700/j.bh.1001-5965.2016.0755
    LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278–2324. doi: 10.1109/5.726791
    GAO Ligang, CHEN Paiyu, and YU Shimeng. Demonstration of convolution kernel operation on resistive crosspoint array[J]. IEEE Electron Device Letters, 2016, 7(7): 870–873. doi: 10.1109/LED.2016.2573140
    GIRSHICK R, IANDOLA F, DARRELL T, et al. Deformable part models are convolutional neural networks[C]. Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA, 2015: 437–446. doi: 10.1109/CVPR.2015.7298641.
    HINTON G E. How neural networks learn from experience[J]. Scientific American, 1992, 267(3): 145–151. doi: 10.1038/scientificamerican0992-144
    BOUVRIE J. Notes on convolutional neural networks[R]. Massachusetts: Center for biological and computational learning, 2006: 38–44.
    RUMELHAR T D E, HINTON G E, and WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533–536. doi: 10.1038/323533a0
    KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[C]. Proceedings of Advances in Neural Information Processing Systems 25, Lake Tahoe, USA, 2012: 1097–1105. doi: 10.1145/3065386.
    NING Chen, LIU Wenbo, and WANG Xin. Infrared object recognition based on monogenic features and multiple kernel learning[C]. The 2018 IEEE International Conference on Image, Vision and Computing. Chongqing, China, 2018: 204–208.
  • 加載中
圖(6) / 表(1)
計(jì)量
  • 文章訪問(wèn)數(shù):  4261
  • HTML全文瀏覽量:  1475
  • PDF下載量:  366
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2018-06-27
  • 修回日期:  2018-12-28
  • 網(wǎng)絡(luò)出版日期:  2019-01-03
  • 刊出日期:  2019-05-01

目錄

    /

    返回文章
    返回