一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于接收信號(hào)強(qiáng)度非齊性分布特征的半監(jiān)督學(xué)習(xí)室內(nèi)定位指紋庫構(gòu)建

李世寶 王升志 劉建航 黃庭培 張?chǎng)?/a>

李世寶, 王升志, 劉建航, 黃庭培, 張?chǎng)? 基于接收信號(hào)強(qiáng)度非齊性分布特征的半監(jiān)督學(xué)習(xí)室內(nèi)定位指紋庫構(gòu)建[J]. 電子與信息學(xué)報(bào), 2019, 41(10): 2302-2309. doi: 10.11999/JEIT180599
引用本文: 李世寶, 王升志, 劉建航, 黃庭培, 張?chǎng)? 基于接收信號(hào)強(qiáng)度非齊性分布特征的半監(jiān)督學(xué)習(xí)室內(nèi)定位指紋庫構(gòu)建[J]. 電子與信息學(xué)報(bào), 2019, 41(10): 2302-2309. doi: 10.11999/JEIT180599
Shibao LI, Shengzhi WANG, Jianhang LIU, Tingpei HUANG, Xin ZHANG. Semi-supervised Indoor Fingerprint Database Construction Method Based on the Nonhomogeneous Distribution Characteristic of Received Signal Strength[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2302-2309. doi: 10.11999/JEIT180599
Citation: Shibao LI, Shengzhi WANG, Jianhang LIU, Tingpei HUANG, Xin ZHANG. Semi-supervised Indoor Fingerprint Database Construction Method Based on the Nonhomogeneous Distribution Characteristic of Received Signal Strength[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2302-2309. doi: 10.11999/JEIT180599

基于接收信號(hào)強(qiáng)度非齊性分布特征的半監(jiān)督學(xué)習(xí)室內(nèi)定位指紋庫構(gòu)建

doi: 10.11999/JEIT180599
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(61972417, 61601519, 61872385),中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金(18CX02134A, 18CX02137A, 18CX02133A,19CX05003A-4)
詳細(xì)信息
    作者簡(jiǎn)介:

    李世寶:男,1978年生,副教授,研究方向?yàn)橐苿?dòng)計(jì)算、無線傳感器網(wǎng)絡(luò)、干擾對(duì)齊等

    王升志:男,1994年生,碩士生,研究方向?yàn)闊o線定位技術(shù)

    劉建航:男,1978年生,副教授、博士,研究方向?yàn)闊o線局域網(wǎng)、車聯(lián)網(wǎng)

    黃庭培:女,1980年生,講師、博士,研究方向?yàn)闊o線傳感器網(wǎng)絡(luò)

    張?chǎng)危耗校?993年生,碩士生,研究方向?yàn)闊o線定位技術(shù)

    通訊作者:

    李世寶 lishibao@upc.edu.cn

  • 中圖分類號(hào): TN929.5

Semi-supervised Indoor Fingerprint Database Construction Method Based on the Nonhomogeneous Distribution Characteristic of Received Signal Strength

Funds: The National Natural Science Foundation of China (61972417, 61601519, 61872385), The Fundamental Research Funds for the Central Universities (18CX02134A, 18CX02137A, 18CX02133A, 19CX05003A-4)
  • 摘要: 室內(nèi)定位中半監(jiān)督學(xué)習(xí)的指紋庫構(gòu)建方法能夠降低人力開銷,但忽略了高維接收信號(hào)強(qiáng)度(RSS)數(shù)據(jù)不均勻的非齊分布特點(diǎn),影響定位精度,針對(duì)此問題該文提出一種基于RSS非齊性分布特征的半監(jiān)督流形對(duì)齊指紋庫構(gòu)建方法。該算法運(yùn)用局部RSS尺度參數(shù)以及共享近鄰相似性構(gòu)造權(quán)重矩陣,得到精確反映RSS數(shù)據(jù)流形結(jié)構(gòu)的權(quán)重圖,利用該權(quán)重圖通過求解流形對(duì)齊的目標(biāo)函數(shù)最優(yōu)解,實(shí)現(xiàn)運(yùn)用少量標(biāo)記數(shù)據(jù)對(duì)大量未標(biāo)記數(shù)據(jù)的位置標(biāo)定。實(shí)驗(yàn)結(jié)果表明,該算法可以顯著降低離線階段數(shù)據(jù)采集的工作量,同時(shí)可以取得較高的定位精度。
  • 圖  1  RSS非齊性分布示意圖

    圖  2  3個(gè)數(shù)據(jù)集RSS數(shù)據(jù)疏密分布

    圖  3  TUT數(shù)據(jù)集各參考點(diǎn)RSS疏密程度

    圖  4  3個(gè)房間的RSS數(shù)據(jù)在LDA下2維空間分布

    圖  5  算法示意圖

    圖  6  實(shí)驗(yàn)環(huán)境平面圖

    圖  7  不同算法定位性能

    圖  8  不同比例指紋數(shù)下的定位精度下降比率

    圖  9  不同算法構(gòu)建指紋庫時(shí)間消耗

    圖  10  AP個(gè)數(shù)對(duì)定位精度的影響

    圖  11  共同近鄰相似性中鄰居數(shù)對(duì)定位性能影響

  • MELAMED R. Indoor localization: Challenges and opportunities[C]. 2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems, Austin, USA, 2016: 1–2.
    徐玉濱, 鄧志安, 馬琳. 基于核直接判別分析和支持向量回歸的WLAN室內(nèi)定位算法[J]. 電子與信息學(xué)報(bào), 2011, 33(4): 896–901. doi: 10.3724/SP.J.1146.2010.00813

    XU Yubin, DENG Zhian, and MA Lin. WLAN indoor positioning algorithm based on KDDA and SVR[J]. Journal of Electronics &Information Technology, 2011, 33(4): 896–901. doi: 10.3724/SP.J.1146.2010.00813
    KHALAJMEHRABADI A, GATSIS N, and AKOPIAN D. Modern WLAN fingerprinting indoor positioning methods and deployment challenges[J]. IEEE Communications Surveys & Tutorials, 2017, 19(3): 1974–2002. doi: 10.1109/COMST.2017.2671454
    JI Yiming, BIAZ S, PANDEY S, et al. ARIADNE: A dynamic indoor signal map construction and localization system[C]. The 4th International Conference on Mobile Systems, Applications and Services, Uppsala, Sweden, 2006: 151–164.
    OUYANG R W, WONG K K S, LEA C T, et al. Indoor location estimation with reduced calibration exploiting unlabeled data via hybrid generative/discriminative learning[J]. IEEE Transactions on Mobile Computing, 2012, 11(11): 1613–1626. doi: 10.1109/TMC.2011.193
    SOROUR S, LOSTANLEN Y, VALAEE S, et al. Joint indoor localization and radio map construction with limited deployment load[J]. IEEE Transactions on Mobile Computing, 2015, 14(5): 1031–1043. doi: 10.1109/TMC.2014.2343636
    ZHOU Mu, TANG Yunxia, TIAN Zengshan, et al. Semi-supervised learning for indoor hybrid fingerprint database calibration with low effort[J]. IEEE Access, 2017, 5: 4388–4400. doi: 10.1109/ACCESS.2017.2678603
    WANG Jin, TAN N, LUO Jun, et al. WOLoc: WiFi-only outdoor localization using crowdsensed hotspot labels[C]. IEEE Conference on Computer Communications, Atlanta, GA, USA, 2017: 1–9.
    CHAPELLE O and ZIEN A. Semi-supervised classification by low density separation[C]. The Tenth International Workshop on Artificial Intelligence and Statistics, Bridgetown, Barbados, 2005: 57–64.
    STEVENS J R, RESMINI R G, and MESSINGER D W. Spectral-density-based graph construction techniques for hyperspectral image analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(10): 5966–5983. doi: 10.1109/TGRS.2017.2718547
    ZHU Manli and MARTINEZ A M. Pruning noisy bases in discriminant analysis[J]. IEEE Transactions on Neural Networks, 2008, 19(1): 148–157. doi: 10.1109/TNN.2007.904040
    RODRIGUEZ A and LAIO A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191): 1492–1496. doi: 10.1126/science.1242072
    LOHAN E S, TORRES-SOSPEDRA J, LEPP?KOSKI H, et al. Wi-Fi crowdsourced fingerprinting dataset for indoor positioning[J]. Data, 2017, 2(4): 32. doi: 10.3390/data2040032
    TORRES-SOSPEDRA J, MONTOLIU R, MARTíNEZ-USó A, et al. UJIIndoorLoc: A new multi-building and multi-floor database for WLAN fingerprint-based indoor localization problems[C]. 2014 International Conference on Indoor Positioning and Indoor Navigation, Busan, South Korea, 2014: 261–270.
    ZELNIK-MANOR L and PERONA P. Self-tuning spectral clustering[C]. Advances in Neural Information Processing Systems, Vancouver, British Columbia, Canada, 2005: 1601–1608.
    TORRES-SOSPEDRA J, MONTOLIU R, TRILLES S, et al. Comprehensive analysis of distance and similarity measures for Wi-Fi fingerprinting indoor positioning systems[J]. Expert Systems with Applications, 2015, 42(23): 9263–9278. doi: 10.1016/j.eswa.2015.08.013
    BELKIN M and NIYOGI P. Laplacian eigenmaps for dimensionality reduction and data representation[J]. Neural Computation, 2003, 15(6): 1373–1396. doi: 10.1162/089976603321780317
    HAM J, LEE D D and SAUL L K. Semisupervised alignment of manifolds[C]. The Tenth International Workshop on Artificial Intelligence and Statistics, Bridgetown, Barbados, 2005: 120–127.
    BAHL P and PADMANABHAN V N. RADAR: An in-building RF-based user location and tracking system[C]. The Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies, Tel Aviv, Israel, 2000, 2: 775–784.
  • 加載中
圖(11)
計(jì)量
  • 文章訪問數(shù):  3340
  • HTML全文瀏覽量:  924
  • PDF下載量:  89
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2018-06-20
  • 修回日期:  2019-02-28
  • 網(wǎng)絡(luò)出版日期:  2019-03-30
  • 刊出日期:  2019-10-01

目錄

    /

    返回文章
    返回