一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言?xún)?nèi)容
驗(yàn)證碼

基于非局部梯度的圖像質(zhì)量評(píng)價(jià)算法

高敏娟 黨宏社 魏立力 張選德

高敏娟, 黨宏社, 魏立力, 張選德. 基于非局部梯度的圖像質(zhì)量評(píng)價(jià)算法[J]. 電子與信息學(xué)報(bào), 2019, 41(5): 1122-1129. doi: 10.11999/JEIT180597
引用本文: 高敏娟, 黨宏社, 魏立力, 張選德. 基于非局部梯度的圖像質(zhì)量評(píng)價(jià)算法[J]. 電子與信息學(xué)報(bào), 2019, 41(5): 1122-1129. doi: 10.11999/JEIT180597
Minjuan GAO, Hongshe DANG, Lili WEI, Xuande ZHANG. Image Quality Assessment Algorithm Based on Non-local Gradient[J]. Journal of Electronics & Information Technology, 2019, 41(5): 1122-1129. doi: 10.11999/JEIT180597
Citation: Minjuan GAO, Hongshe DANG, Lili WEI, Xuande ZHANG. Image Quality Assessment Algorithm Based on Non-local Gradient[J]. Journal of Electronics & Information Technology, 2019, 41(5): 1122-1129. doi: 10.11999/JEIT180597

基于非局部梯度的圖像質(zhì)量評(píng)價(jià)算法

doi: 10.11999/JEIT180597
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(61871260, 61603234, 61362029, 61461043)
詳細(xì)信息
    作者簡(jiǎn)介:

    高敏娟:女,1984年生,博士生,研究方向?yàn)閳D像處理、圖像質(zhì)量評(píng)價(jià)

    黨宏社:男,1962年生,教授,博士生導(dǎo)師,研究方向?yàn)楣I(yè)過(guò)程與優(yōu)化、計(jì)算機(jī)控制、圖像處理

    魏立力:男,1965年生,教授,研究方向?yàn)閼?yīng)用統(tǒng)計(jì)與數(shù)據(jù)分析

    張選德:男,1979 年生,教授,博士生導(dǎo)師,研究方向?yàn)閳D像恢復(fù)、圖像質(zhì)量評(píng)價(jià)、稀疏表示和低秩逼近理論

    通訊作者:

    張選德 zhangxuande@sust.edu.cn

  • 中圖分類(lèi)號(hào): TP391

Image Quality Assessment Algorithm Based on Non-local Gradient

Funds: The National Natural Science Foundation of China (61871260, 61603234, 61362029, 61461043)
  • 摘要:

    圖像質(zhì)量評(píng)價(jià)研究的目標(biāo)在于模擬人類(lèi)視覺(jué)系統(tǒng)對(duì)圖像質(zhì)量的感知過(guò)程,構(gòu)建與主觀評(píng)價(jià)結(jié)果盡可能一致的客觀評(píng)價(jià)算法?,F(xiàn)有的很多算法都是基于局部結(jié)構(gòu)相似設(shè)計(jì)的,但人對(duì)圖像的主觀感知是高級(jí)的、語(yǔ)義的過(guò)程,而語(yǔ)義信息本質(zhì)上是非局部的,因此圖像質(zhì)量評(píng)價(jià)應(yīng)該考慮圖像的非局部信息。該文突破了經(jīng)典的基于局部信息的算法框架,提出一種基于非局部信息的框架,并在此框架內(nèi)構(gòu)建了一種基于非局部梯度的圖像質(zhì)量評(píng)價(jià)算法,該算法通過(guò)度量參考圖像與失真圖像的非局部梯度之間的相似性來(lái)預(yù)測(cè)圖像質(zhì)量。在公開(kāi)測(cè)試數(shù)據(jù)庫(kù)TID2008, LIVE, CSIQ上的數(shù)值實(shí)驗(yàn)結(jié)果表明,該算法能獲得較好的評(píng)價(jià)效果。

  • 圖  1  基于局部和非局部信息的FRIQA模型兩步框架

    圖  2  參考圖像中以$i$為中心、$t$為邊長(zhǎng)的方鄰域

    圖  3  6種算法在TID2008數(shù)據(jù)庫(kù)中的散點(diǎn)圖

    表  1  10種不同IQA算法在TID2008, CSIQ, LIVE數(shù)據(jù)庫(kù)的實(shí)驗(yàn)結(jié)果比較

    數(shù)據(jù)庫(kù)性能指標(biāo)PSNRVSNRSSIMMS-SSIMIW-SSIMFSIMESSIMGMSDGSIMNGSIM
    TID2008 SROCC 0.524 0.704 0.774 0.852 0.855 0.880 0.884 0.891 0.855 0.892
    KROCC 0.369 0.534 0.576 0.654 0.663 0.694 0.704 0.708 0.665 0.713
    PLCC 0.530 0.682 0.773 0.842 0.857 0.873 0.885 0.879 0.846 0.886
    RMSE 1.137 0.981 0.851 0.729 0.689 0.652 0.624 0.640 0.715 0.622
    CSIQ SROCC 0.805 0.810 0.875 0.913 0.921 0.924 0.932 0.957 0.912 0.962
    KROCC 0.608 0.624 0.690 0.739 0.752 0.756 0.768 0.813 0.740 0.825
    PLCC 0.800 0.800 0.861 0.899 0.914 0.912 0.922 0.954 0.897 0.961
    RMSE 0.157 0.157 0.133 0.114 0.106 0.100 0.101 0.079 0.115 0.073
    LIVE SROCC 0.875 0.927 0.947 0.944 0.956 0.963 0.962 0.960 0.955 0.950
    KROCC 0.686 0.761 0.796 0.792 0.817 0.833 0.839 0.823 0.813 0.815
    PLCC 0.872 0.923 0.944 0.943 0.952 0.959 0.953 0.960 0.943 0.946
    RMSE 13.36 10.50 8.944 9.095 8.347 7.678 7.003 7.62 9.037 7.455
    下載: 導(dǎo)出CSV

    表  2  10種不同IQA算法在TID2008,CSIQ, LIVE數(shù)據(jù)庫(kù)單一失真性能(SROCC)的比較

    數(shù)據(jù)庫(kù)失真類(lèi)型PSNRVSNRSSIMMS-SSIMIW-SSIMFSIMESSIMGMSDGSIMNGSIM
    TID2008 AWN 0.907 0.772 0.811 0.809 0.786 0.857 0.885 0.918 0.857 0.902
    ANMC 0.899 0.779 0.803 0.805 0.792 0.851 0.813 0.898 0.809 0.873
    SCN 0.917 0.766 0.815 0.819 0.771 0.848 0.913 0.913 0.890 0.929
    JPEG 0.872 0.917 0.925 0.934 0.918 0.928 0.943 0.952 0.939 0.956
    JP2K 0.813 0.951 0.962 0.973 0.973 0.977 0.975 0.980 0.975 0.958
    J2TE 0.831 0.790 0.858 0.852 0.820 0.854 0.879 0.883 0.892 0.926
    CSIQ AWGN 0.936 0.924 0.897 0.947 0.938 0.926 0.949 0.968 0.944 0.966
    JPEG 0.888 0.903 0.954 0.963 0.966 0.965 0.964 0.965 0.963 0.966
    JP2K 0.936 0.948 0.960 0.968 0.968 0.968 0.967 0.972 0.964 0.974
    FNIOSE 0.933 0.908 0.892 0.933 0.905 0.923 0.943 0.950 0.938 0.962
    BLUR 0.929 0.944 0.960 0.971 0.978 0.972 0.962 0.971 0.958 0.967
    CONTRST 0.862 0.870 0.792 0.952 0.953 0.942 0.939 0.904 0.950 0.946
    LIVE JPEG2 0.895 0.955 0.961 0.962 0.964 0.971 0.980 0.971 0.958 0.972
    JPEG 0.880 0.965 0.976 0.981 0.980 0.983 0.981 0.978 0.909 0.960
    AWGN 0.985 0.978 0.969 0.973 0.966 0.965 0.976 0.974 0.977 0.993
    BLUR 0.782 0.941 0.951 0.954 0.972 0.970 0.991 0.957 0.951 0.939
    FASTFA 0.890 0.902 0.955 0.947 0.944 0.949 0.947 0.942 0.939 0.956
    下載: 導(dǎo)出CSV
  • BAE S H and KIM M. A novel image quality assessment with globally and locally consilient visual quality perception[J]. IEEE Transactions on Image Processing, 2016, 25(5): 2392–2406. doi: 10.1109/TIP.2016.2545863
    WANG Hanli, FU Jie, LIN Weisi, et al. Image quality assessment based on local linear information and distortion-specific compensation[J]. IEEE Transactions on Image Processing, 2017, 26(2): 915–926. doi: 10.1109/TIP.2016.2639451
    DI E C and JACOVITTI G. A detail based method for linear full reference image quality prediction[J]. IEEE Transactions on Image Processing, 2017, 27(1): 179–192. doi: 10.1109/TIP.2017.2757139
    CHANDLER D M and HEMAMI S S. VSNR: A wavelet-based visual signal-to-noise ratio for natural images[J]. IEEE Transactions on Image Processing, 2007, 16(9): 2284–2298. doi: 10.1109/TIP.2007.901820
    褚江, 陳強(qiáng), 楊曦晨. 全參考圖像質(zhì)量評(píng)價(jià)綜述[J]. 計(jì)算機(jī)應(yīng)用研究, 2014, 31(1): 13–22. doi: 10.3969/j.issn.1001-3695.2014.01.003

    CHU Jiang, CHEN Qiang, and YANG Xichen. Review on full reference image quality assessment algorithms[J]. Application Research of Computers, 2014, 31(1): 13–22. doi: 10.3969/j.issn.1001-3695.2014.01.003
    WANG Zhou and BOVIK A C. Mean squared error: love it or leave it? A new look at signal fidelity measures[J]. IEEE Signal Processing Magazine, 2009, 26(1): 98–117. doi: 10.1109/MSP.2008.930649
    HUYNH-THU Q and GHANBARI M. Scope of validity of PSNR in image/video quality assessment[J]. Electronics Letters, 2008, 44(13): 800–801. doi: 10.1049/el:20080522
    WANG Zhou, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600–612. doi: 10.1109/TIP.2003.819861
    WANG Zhou, SIMONCELLI E P, and BOVIK A C. Multiscale structural similarity for image quality assessment[C]. Proceedings of 37th IEEE Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2003: 1398–1402.
    LI Chaofeng and BOVIK A C. Three-component weighted structural similarity index[C]. SPIE Conference on Image Quality and System Performance, San Jose, USA, 2009, 7242: 72420Q–72420Q-9.
    WANG Zhou and LI Qiang. Information content weighting for perceptual image quality assessment[J]. IEEE Transactions on Image Processing, 2011, 20(5): 1185–1198. doi: 10.1109/TIP.2010.2092435
    ZHANG Lin, ZHANG Lei, MOU Xuanqin, et al. FSIM: A feature similarity index for image quality assessment[J]. IEEE Transactions on Image Processing, 2011, 20(8): 2378–2386. doi: 10.1109/TIP.2011.2109730
    LIU Anmin, LIN Weisi, and NARWARIA M. Image quality assessment based on gradient similarity[J]. IEEE Transactions on Image Processing, 2012, 21(4): 1500–1512. doi: 10.1109/TIP.2011.2175935
    XUE Wufeng, ZHANG Lei, MOU Xuanqin, et al. Gradient magnitude similarity deviation: A highly efficient perceptual image quality index[J]. IEEE Transactions on Image Processing, 2014, 23(2): 684–695. doi: 10.1109/TIP.2013.2293423
    ZHANG Xuande, FENG Xiangchu, WANG Weiwei, et al. Edge strength similarity for image quality assessment[J]. IEEE Signal Processing Letters, 2013, 20(4): 319–322. doi: 10.1109/LSP.2013.2244081
    WANG Tonghan, JIA Huizhen, and SHU Huazhong. Full-reference image quality assessment algorithm based on gradient magnitude and histogram of oriented gradient[J]. Journal of Southeast University, 2018, 48(2): 276–281. doi: 10.3969/j.issn.1001-0505.2018.02.014
    NI Zhangkai, MA Lin, ZENG Huanqiang, et al. Gradient direction for screen content image quality assessment[J]. IEEE Signal Processing Letters, 2016, 23(10): 1394–1398. doi: 10.1109/LSP.2016.2599294
    DING Li, HUANG Hua, and ZANG Yu. Image quality assessment using directional anisotropy structure measurement[J]. IEEE Transactions on Image Processing, 2017, 26(4): 1799–1809. doi: 10.1109/TIP.2017.2665972
    張帆, 張偌雅, 李珍珍. 基于對(duì)稱(chēng)相位一致性的圖像質(zhì)量評(píng)價(jià)方法[J]. 激光與光電子學(xué)進(jìn)展, 2017, 54(10): 194–202. doi: 10.3788/LOP54.101003

    ZHANG Fan, ZHANG Ruoya, and LI Zhenzhen. Image quality assessment based on symmetry phase congruency[J]. Laser &Optoelectronics Progress, 2017, 54(10): 194–202. doi: 10.3788/LOP54.101003
    PONOMARENKO N, LUKIN V, ZELENSKY A, et al. TID2008: A database for evaluation of full-reference visual quality assessment metrics[OL]. http://www.ponomarenko.info/papers/mre2009tid.pdf. 2016.10.
    LARSON EC and CHANDLER D. Categorical subjective image quality (CSIQ) database[OL]. http://vision.okstate.edu/csiq, 2016.10.
    SHEIKH H R, WANG Zhou, BOVIK A C, et al. Image and video quality assessment research at LIVE[OL]. http://live.ece.utexas.edu/rese-arch/quality/. 2016.10.
  • 加載中
圖(3) / 表(2)
計(jì)量
  • 文章訪(fǎng)問(wèn)數(shù):  2130
  • HTML全文瀏覽量:  973
  • PDF下載量:  111
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2018-06-19
  • 修回日期:  2018-12-18
  • 網(wǎng)絡(luò)出版日期:  2018-12-26
  • 刊出日期:  2019-05-01

目錄

    /

    返回文章
    返回