基于非局部梯度的圖像質(zhì)量評(píng)價(jià)算法
doi: 10.11999/JEIT180597
-
1.
陜西科技大學(xué)電氣與信息工程學(xué)院 ??西安 ??710021
-
2.
寧夏大學(xué)數(shù)學(xué)統(tǒng)計(jì)學(xué)院 ??銀川 ??750021
Image Quality Assessment Algorithm Based on Non-local Gradient
-
1.
College of Electrical and Information Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China
-
2.
School of Mathematics and Statistics, Ningxia University, Yinchuan 750021, China
-
摘要:
圖像質(zhì)量評(píng)價(jià)研究的目標(biāo)在于模擬人類(lèi)視覺(jué)系統(tǒng)對(duì)圖像質(zhì)量的感知過(guò)程,構(gòu)建與主觀評(píng)價(jià)結(jié)果盡可能一致的客觀評(píng)價(jià)算法?,F(xiàn)有的很多算法都是基于局部結(jié)構(gòu)相似設(shè)計(jì)的,但人對(duì)圖像的主觀感知是高級(jí)的、語(yǔ)義的過(guò)程,而語(yǔ)義信息本質(zhì)上是非局部的,因此圖像質(zhì)量評(píng)價(jià)應(yīng)該考慮圖像的非局部信息。該文突破了經(jīng)典的基于局部信息的算法框架,提出一種基于非局部信息的框架,并在此框架內(nèi)構(gòu)建了一種基于非局部梯度的圖像質(zhì)量評(píng)價(jià)算法,該算法通過(guò)度量參考圖像與失真圖像的非局部梯度之間的相似性來(lái)預(yù)測(cè)圖像質(zhì)量。在公開(kāi)測(cè)試數(shù)據(jù)庫(kù)TID2008, LIVE, CSIQ上的數(shù)值實(shí)驗(yàn)結(jié)果表明,該算法能獲得較好的評(píng)價(jià)效果。
-
關(guān)鍵詞:
- 圖像質(zhì)量評(píng)價(jià) /
- 人類(lèi)視覺(jué)系統(tǒng) /
- 非局部梯度
Abstract:The goal of Image Quality Assessment (IQA) research is to simulate the Human Visual System’s (HVS) perception process of assessing image quality and construct an objective evaluation algorithm that is as consistent as the subjective evaluation result. Many existing algorithms are designed based on local structural similarity, but human subjective perception of images is a high-level, semantic process, and semantic information is essentially non-local, so image quality assessment should take the non-local information of the image into consideration. This paper breaks through the classical framework based on local information, and proposes a framework based on non-local information. Under the proposed framework, an image quality assessment algorithm based on non-local gradient is also presented. This algorithm predicts image quality by measuring the similarity between the non-local gradients of reference image and the distorted image. The experimental results on the public test database TID2008, LIVE, and CSIQ show that the proposed algorithm can obtain better evaluation results.
-
表 1 10種不同IQA算法在TID2008, CSIQ, LIVE數(shù)據(jù)庫(kù)的實(shí)驗(yàn)結(jié)果比較
數(shù)據(jù)庫(kù) 性能指標(biāo) PSNR VSNR SSIM MS-SSIM IW-SSIM FSIM ESSIM GMSD GSIM NGSIM TID2008 SROCC 0.524 0.704 0.774 0.852 0.855 0.880 0.884 0.891 0.855 0.892 KROCC 0.369 0.534 0.576 0.654 0.663 0.694 0.704 0.708 0.665 0.713 PLCC 0.530 0.682 0.773 0.842 0.857 0.873 0.885 0.879 0.846 0.886 RMSE 1.137 0.981 0.851 0.729 0.689 0.652 0.624 0.640 0.715 0.622 CSIQ SROCC 0.805 0.810 0.875 0.913 0.921 0.924 0.932 0.957 0.912 0.962 KROCC 0.608 0.624 0.690 0.739 0.752 0.756 0.768 0.813 0.740 0.825 PLCC 0.800 0.800 0.861 0.899 0.914 0.912 0.922 0.954 0.897 0.961 RMSE 0.157 0.157 0.133 0.114 0.106 0.100 0.101 0.079 0.115 0.073 LIVE SROCC 0.875 0.927 0.947 0.944 0.956 0.963 0.962 0.960 0.955 0.950 KROCC 0.686 0.761 0.796 0.792 0.817 0.833 0.839 0.823 0.813 0.815 PLCC 0.872 0.923 0.944 0.943 0.952 0.959 0.953 0.960 0.943 0.946 RMSE 13.36 10.50 8.944 9.095 8.347 7.678 7.003 7.62 9.037 7.455 下載: 導(dǎo)出CSV
表 2 10種不同IQA算法在TID2008,CSIQ, LIVE數(shù)據(jù)庫(kù)單一失真性能(SROCC)的比較
數(shù)據(jù)庫(kù) 失真類(lèi)型 PSNR VSNR SSIM MS-SSIM IW-SSIM FSIM ESSIM GMSD GSIM NGSIM TID2008 AWN 0.907 0.772 0.811 0.809 0.786 0.857 0.885 0.918 0.857 0.902 ANMC 0.899 0.779 0.803 0.805 0.792 0.851 0.813 0.898 0.809 0.873 SCN 0.917 0.766 0.815 0.819 0.771 0.848 0.913 0.913 0.890 0.929 JPEG 0.872 0.917 0.925 0.934 0.918 0.928 0.943 0.952 0.939 0.956 JP2K 0.813 0.951 0.962 0.973 0.973 0.977 0.975 0.980 0.975 0.958 J2TE 0.831 0.790 0.858 0.852 0.820 0.854 0.879 0.883 0.892 0.926 CSIQ AWGN 0.936 0.924 0.897 0.947 0.938 0.926 0.949 0.968 0.944 0.966 JPEG 0.888 0.903 0.954 0.963 0.966 0.965 0.964 0.965 0.963 0.966 JP2K 0.936 0.948 0.960 0.968 0.968 0.968 0.967 0.972 0.964 0.974 FNIOSE 0.933 0.908 0.892 0.933 0.905 0.923 0.943 0.950 0.938 0.962 BLUR 0.929 0.944 0.960 0.971 0.978 0.972 0.962 0.971 0.958 0.967 CONTRST 0.862 0.870 0.792 0.952 0.953 0.942 0.939 0.904 0.950 0.946 LIVE JPEG2 0.895 0.955 0.961 0.962 0.964 0.971 0.980 0.971 0.958 0.972 JPEG 0.880 0.965 0.976 0.981 0.980 0.983 0.981 0.978 0.909 0.960 AWGN 0.985 0.978 0.969 0.973 0.966 0.965 0.976 0.974 0.977 0.993 BLUR 0.782 0.941 0.951 0.954 0.972 0.970 0.991 0.957 0.951 0.939 FASTFA 0.890 0.902 0.955 0.947 0.944 0.949 0.947 0.942 0.939 0.956 下載: 導(dǎo)出CSV
-
BAE S H and KIM M. A novel image quality assessment with globally and locally consilient visual quality perception[J]. IEEE Transactions on Image Processing, 2016, 25(5): 2392–2406. doi: 10.1109/TIP.2016.2545863 WANG Hanli, FU Jie, LIN Weisi, et al. Image quality assessment based on local linear information and distortion-specific compensation[J]. IEEE Transactions on Image Processing, 2017, 26(2): 915–926. doi: 10.1109/TIP.2016.2639451 DI E C and JACOVITTI G. A detail based method for linear full reference image quality prediction[J]. IEEE Transactions on Image Processing, 2017, 27(1): 179–192. doi: 10.1109/TIP.2017.2757139 CHANDLER D M and HEMAMI S S. VSNR: A wavelet-based visual signal-to-noise ratio for natural images[J]. IEEE Transactions on Image Processing, 2007, 16(9): 2284–2298. doi: 10.1109/TIP.2007.901820 褚江, 陳強(qiáng), 楊曦晨. 全參考圖像質(zhì)量評(píng)價(jià)綜述[J]. 計(jì)算機(jī)應(yīng)用研究, 2014, 31(1): 13–22. doi: 10.3969/j.issn.1001-3695.2014.01.003CHU Jiang, CHEN Qiang, and YANG Xichen. Review on full reference image quality assessment algorithms[J]. Application Research of Computers, 2014, 31(1): 13–22. doi: 10.3969/j.issn.1001-3695.2014.01.003 WANG Zhou and BOVIK A C. Mean squared error: love it or leave it? A new look at signal fidelity measures[J]. IEEE Signal Processing Magazine, 2009, 26(1): 98–117. doi: 10.1109/MSP.2008.930649 HUYNH-THU Q and GHANBARI M. Scope of validity of PSNR in image/video quality assessment[J]. Electronics Letters, 2008, 44(13): 800–801. doi: 10.1049/el:20080522 WANG Zhou, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600–612. doi: 10.1109/TIP.2003.819861 WANG Zhou, SIMONCELLI E P, and BOVIK A C. Multiscale structural similarity for image quality assessment[C]. Proceedings of 37th IEEE Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2003: 1398–1402. LI Chaofeng and BOVIK A C. Three-component weighted structural similarity index[C]. SPIE Conference on Image Quality and System Performance, San Jose, USA, 2009, 7242: 72420Q–72420Q-9. WANG Zhou and LI Qiang. Information content weighting for perceptual image quality assessment[J]. IEEE Transactions on Image Processing, 2011, 20(5): 1185–1198. doi: 10.1109/TIP.2010.2092435 ZHANG Lin, ZHANG Lei, MOU Xuanqin, et al. FSIM: A feature similarity index for image quality assessment[J]. IEEE Transactions on Image Processing, 2011, 20(8): 2378–2386. doi: 10.1109/TIP.2011.2109730 LIU Anmin, LIN Weisi, and NARWARIA M. Image quality assessment based on gradient similarity[J]. IEEE Transactions on Image Processing, 2012, 21(4): 1500–1512. doi: 10.1109/TIP.2011.2175935 XUE Wufeng, ZHANG Lei, MOU Xuanqin, et al. Gradient magnitude similarity deviation: A highly efficient perceptual image quality index[J]. IEEE Transactions on Image Processing, 2014, 23(2): 684–695. doi: 10.1109/TIP.2013.2293423 ZHANG Xuande, FENG Xiangchu, WANG Weiwei, et al. Edge strength similarity for image quality assessment[J]. IEEE Signal Processing Letters, 2013, 20(4): 319–322. doi: 10.1109/LSP.2013.2244081 WANG Tonghan, JIA Huizhen, and SHU Huazhong. Full-reference image quality assessment algorithm based on gradient magnitude and histogram of oriented gradient[J]. Journal of Southeast University, 2018, 48(2): 276–281. doi: 10.3969/j.issn.1001-0505.2018.02.014 NI Zhangkai, MA Lin, ZENG Huanqiang, et al. Gradient direction for screen content image quality assessment[J]. IEEE Signal Processing Letters, 2016, 23(10): 1394–1398. doi: 10.1109/LSP.2016.2599294 DING Li, HUANG Hua, and ZANG Yu. Image quality assessment using directional anisotropy structure measurement[J]. IEEE Transactions on Image Processing, 2017, 26(4): 1799–1809. doi: 10.1109/TIP.2017.2665972 張帆, 張偌雅, 李珍珍. 基于對(duì)稱(chēng)相位一致性的圖像質(zhì)量評(píng)價(jià)方法[J]. 激光與光電子學(xué)進(jìn)展, 2017, 54(10): 194–202. doi: 10.3788/LOP54.101003ZHANG Fan, ZHANG Ruoya, and LI Zhenzhen. Image quality assessment based on symmetry phase congruency[J]. Laser &Optoelectronics Progress, 2017, 54(10): 194–202. doi: 10.3788/LOP54.101003 PONOMARENKO N, LUKIN V, ZELENSKY A, et al. TID2008: A database for evaluation of full-reference visual quality assessment metrics[OL]. http://www.ponomarenko.info/papers/mre2009tid.pdf. 2016.10. LARSON EC and CHANDLER D. Categorical subjective image quality (CSIQ) database[OL]. http://vision.okstate.edu/csiq, 2016.10. SHEIKH H R, WANG Zhou, BOVIK A C, et al. Image and video quality assessment research at LIVE[OL]. http://live.ece.utexas.edu/rese-arch/quality/. 2016.10. -