一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標(biāo)題
留言內(nèi)容
驗證碼

基于改進(jìn)小波變換的MEMS陀螺信號去噪算法

陳光武 劉孝博 王迪 劉射德

陳光武, 劉孝博, 王迪, 劉射德. 基于改進(jìn)小波變換的MEMS陀螺信號去噪算法[J]. 電子與信息學(xué)報, 2019, 41(5): 1025-1031. doi: 10.11999/JEIT180590
引用本文: 陳光武, 劉孝博, 王迪, 劉射德. 基于改進(jìn)小波變換的MEMS陀螺信號去噪算法[J]. 電子與信息學(xué)報, 2019, 41(5): 1025-1031. doi: 10.11999/JEIT180590
Guangwu CHEN, Xiaobo LIU, Di WANG, Shede LIU. Denoising of MEMS Gyroscope Based on Improved Wavelet Transform[J]. Journal of Electronics & Information Technology, 2019, 41(5): 1025-1031. doi: 10.11999/JEIT180590
Citation: Guangwu CHEN, Xiaobo LIU, Di WANG, Shede LIU. Denoising of MEMS Gyroscope Based on Improved Wavelet Transform[J]. Journal of Electronics & Information Technology, 2019, 41(5): 1025-1031. doi: 10.11999/JEIT180590

基于改進(jìn)小波變換的MEMS陀螺信號去噪算法

doi: 10.11999/JEIT180590
基金項目: 國家自然科學(xué)基金(61863024, 71761023)、甘肅省基礎(chǔ)研究創(chuàng)新群體計劃(1606RJIA327)、甘肅省自然基金(18JR3RA107, 1610RJYA034)、甘肅省高等學(xué)??蒲许椖抠Y助(2018C-11)、甘肅省科技計劃資助(18CX3ZA004)
詳細(xì)信息
    作者簡介:

    陳光武:男,1976年生,教授,研究方向為慣導(dǎo)和組合導(dǎo)航

    劉孝博:男,1994年生,碩士,研究方向為慣性導(dǎo)航、傳感器數(shù)據(jù)處理

    王迪:男,1991年生,碩士,研究方向為組合導(dǎo)航

    劉射德:男,1994年生,碩士,研究方向為視覺導(dǎo)航

    通訊作者:

    陳光武 cgwyjh1976@126.com

  • 中圖分類號: U666.1; TN911.7

Denoising of MEMS Gyroscope Based on Improved Wavelet Transform

Funds: The National Natural Science Foundation of China (61863024, 71761023), The Gansu Basic Research Innovation Group Program (1606RJIA327), The Gansu Natural Science Foundation (18JR3RA107 1610RJYA034), Granted by Gansu Provincial Higher Education Research Project (2018C-11), The Gansu Province Science and Technology Plan Funding (18CX3ZA004)
  • 摘要:

    為提高M(jìn)EMS陀螺儀測量精度,抑制測量噪聲對其造成的影響,該文分析了某型號MEMS陀螺儀誤差特性,提出基于遞歸最小二乘法(RLS)多重小波分解重構(gòu)的強追蹤自反饋模型,建立新的軟閾值函數(shù)。由于模型處理后的數(shù)據(jù)帶有部分奇異值,該文提出了一種改進(jìn)的中值濾波算法。對于陀螺儀零偏噪聲問題,提出零偏不穩(wěn)定性抑制算法,并對該算法模型進(jìn)行了詳細(xì)的描述。將某項目研究中列車姿態(tài)測量系統(tǒng)的實驗數(shù)據(jù)應(yīng)用到該算法模型中。測試實驗分為靜態(tài)、動態(tài)兩組,其結(jié)果均表明:該算法減小了信號中的噪聲,有效地抑制了MEMS陀螺儀隨機漂移,提高了姿態(tài)解算的精度??隙嗽撍惴▽ν勇輧x輸出信號噪聲去除,以及使用精度提升的可行性和有效性。

  • 圖  1  模型的系統(tǒng)框圖

    圖  2  改進(jìn)前后的阿倫曲線圖

    圖  3  x 軸原始數(shù)據(jù)濾波處理及相應(yīng)的阿倫方差曲線圖

    圖  4  y 軸原始數(shù)據(jù)濾波處理及相應(yīng)的阿倫方差曲線圖

    圖  5  z 軸原始數(shù)據(jù)濾波處理及相應(yīng)的阿倫方差曲線圖

    圖  6  經(jīng)傳統(tǒng)小波變換和改進(jìn)小波變換處理的姿態(tài)角

    圖  7  動態(tài)下各軸角速率的處理結(jié)果

    圖  8  動態(tài)下姿態(tài)角結(jié)算結(jié)果

    表  1  傳感器性能參數(shù)

    陀螺儀加速度計磁力計
    測量范圍±150, ±500, ±1000, ±2000 (°/s)±2, ±4, ±8, ±16 (g)±0.6 (mT)
    噪聲密度0.01° (/s·$\sqrt {{\rm{Hz}}} $)110 (μg/$\sqrt {{\rm{Hzrms}}} $)48 (nv/$\sqrt {{\rm{Hz}}} $)
    敏感度12.5 mv (/°·s)1000 (mv/g)0.1 mv (v·μT)
    溫漂2%–0.3%/℃±0.3%
    采樣頻率0.1~200 Hz0.1~20 Hz0.1~20 Hz
    ARW (°/h0.5)1.57
    RRW (°/h1.5)600
    BI (°/h)224.2
    下載: 導(dǎo)出CSV

    表  2  兩種小波變換對陀螺儀數(shù)據(jù)處理結(jié)果

    算法坐標(biāo)軸運行時間(s)RMS誤差估計RRW (°/h1.5)ARW (°/h0.5)BI (°/h)RR (°/h)
    傳統(tǒng)的小波變換x26.75497610.1147195.26740.03011.84015.3524
    y28.7449759.2655260.42190.02831.73494.5069
    z27.6459639.2012220.38940.01171.441012.7358
    改進(jìn)的小波變換x26.853960.129068.6507003.0727
    y28.645760.124932.9762002.3039
    z27.698720.12478.6092008.7398
    下載: 導(dǎo)出CSV

    表  3  姿態(tài)解算的MSE誤差估計

    坐標(biāo)軸MSE誤差
    算法改進(jìn)前算法改進(jìn)后
    z4.3257×10–41.1512×10–7
    x8.7754×10–48.5849×10–7
    y1.5196×10–48.4663×10–5
    下載: 導(dǎo)出CSV

    表  4  兩種算法角速率誤差比較數(shù)據(jù)

    算法坐標(biāo)軸MSE (°/s)運行時間(s)MAE (°/s)ARE (%)
    傳統(tǒng)的小波變換x0.04217.6145950.055411.10
    y0.06238.1306190.079613.41
    z0.09768.6473420.084215.76
    改進(jìn)的小波變換x0.09998.4673720.02368.86
    y0.00437.0472500.035410.87
    z0.00258.0213350.041612.52
    下載: 導(dǎo)出CSV

    表  5  兩種算法的姿態(tài)角誤差參數(shù)

    算法姿態(tài)角MSE (°/s)MAE (°/s)
    文獻(xiàn)[20]算法俯仰角0.49120.4524
    航向角0.00280.1873
    橫滾角0.00200.1171
    本文算法俯仰角0.29280.2360
    航向角0.00210.1354
    橫滾角0.00140.0816
    下載: 導(dǎo)出CSV
  • ZHANG Yanshun, PENG Chuang, MOU Dong, et al. An adaptive filtering approach based on the dynamic variance model for reducing MEMS gyroscope random error[J]. Sensors, 2018, 18(1): 3943–3957. doi: 10.3390/s18113943
    XING Haifeng, CHEN Zhiyong, YANG Haotian, et al. Self-alignment MEMS IMU method based on the rotation modulation technique on a swing base[J]. Sensors, 2018, 18(4): 1178–1200. doi: 10.3390/s18041178
    WANG Wei and CHEN Xiyuan. Application of improved 5th-cubature kalman filter in initial strapdown inertial navigation system alignment for large. misalignment angles[J]. Sensors, 2018, 18(2): 659–676. doi: 10.3390/s18020659
    LI Tao, YUAN Gannan, LI wang, et al. Particle filter with novel nonlinear error model for miniature gyroscope based measurement while drilling navigation[J]. Sensors, 2016, 16(3): 371–385. doi: 10.3390/s16030371
    GUO Zhanshe, FU Peng, LIU feng, et al. Design and FEM simulation for a novel resonant silicon MEMS gyroscope with temperature compensation function[J]. Microsyste Technologies, 2018, 24(3): 1453–1459. doi: 10.1007/s00542-017-3524-4
    JON O, AIFONSO B, IBAN L, et al. Evaluation of experimental GNSS and 10-DOF MEMS IMU measurements for train positioning[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 6(5): 1–11. doi: 10.1109/TIM.2018.2838799
    XIAO Dingbang, XIA Dewei, LI Qingsong, et al. A temperature self-calibrating torsional accelerometer with fully differential configurationand integrated reference capacitor[J]. IEEE Sensors, 2015, 6(7): 1–4. doi: 10.1109/ICSENS.2015.7370428
    IGOR P, BROCK B, CAREY M, et al. Towards self-navigating cars using MEMS IMU: Challengesand opportunities[C]. International Symposium on Inertial Sensors and Systems, Moltrasio, Italy, 2018: 1–4.
    金靖, 王崢, 張忠鋼, 等. 基于多元線性回歸模型的光纖陀螺溫度誤差建模[J]. 宇航學(xué)報, 2008, 29(6): 1921–1916. doi: 10.387/s100-1328

    JIN Jing, WANG Zheng, ZHANG Zhonggang, et al. Temperature errors modeling for fiber optic gyroscope using multiple linear regression models[J]. Journal of Aerospace, 2008, 29(6): 1921–1916. doi: 10.387/s100-1328
    DING Jicheng, ZHANG Qian, HUANG Weiquan, et al. Laser gyroscope temperature compensat-i on using modified RBFNN[J]. Sensors, 2014, 14(10): 18711–18727. doi: 10.3390/s141018711
    YUAN Guangmin, YUAN Weizheng, LIANG Xue, et al. Dynamic performance comparison of two kalman filters for rate signal direct modeling and differencing modeling for combining a MEMS gyroscope array to improve accuracy[J]. Sensors, 2015, 15(11): 27590–27610. doi: 10.3390/s151127590
    ZHA Feng, XU Jiangning, LI JingshuHe, et al. IUKF neural network modeling for FOG temperature drift[J]. Beijing Institute of Aerospace Information, 2013, 24(5): 838–844. doi: 10.1109/JSEE.2013.00097
    ZHI S, JACQUES G, MICHAEL J, et al. Low cost two dimension navigation using an augmented Kalman filter/Fast Orthogonal Search module for the integration of reduced inertial sensor system and global positioning[J]. Elsevier, 2011, 19(6): 1111–1132. doi: 10.1016/j.trc.2011.01.001
    REN Honglian and PETER K. Investiga-tion of attitude tracking using an integrated inertial and magnetic navigation system for hand-held surgical instruments[J]. IEEE/ASME Transactions on Mechatronics, 2012, 17(2): 210–217. doi: 10.1109/TMECH.2010.2095504
    CHEN Xiyuan, XU Yuan, LI Qinghua, et al. Application of adaptive extended kalman smoothing on INS/WSN integration system for mobile robot indoors[J]. Mathematical Problems in Engineering, 2013, 10(10): 1–8. doi: 10.1155/2013/130508
    CHU Hairong, SUN Tingting, ZHANG Baiqiang, et al. Rapid transfer alignment of MEMS SINS based on adaptive incremental kalman filter[J]. Sensors, 2017, 17(1): 152–166. doi: 10.3390/s17010152
    FENG Yibo, LI Xisheng, and ZHANG Xiaojuan. An adaptive compensation algorithm for temperature drift of micro-electro-mechanical systems gyroscopes using a strong tracking kalman filter[J]. Sensors, 2015, 15(5): 11222–11238. doi: 10.3390/s150511222
    BIRSEL A and BILLUR B. Leg motion classification with artificial neural networks using wavelet-based features of gyroscope signals[J]. Sensors, 2011, 11(2): 1721–1743. doi: 10.3390/s110201721
    李杰, 曲蕓, 劉俊, 等. 模平方小波閾值在MEMS陀螺儀在信號降噪總的應(yīng)用[J]. 中國慣性術(shù)學(xué)報, 2008, 16(4): 236–239. doi: 10.13695/j.cnki.12-1222/o3.2008.02.03

    LI Jie, QU Yun, LIU Jun, et al. Application of modular square wavelet threshold for denoising MEMS-based gyros signal[J]. Journal of Chinese Inertial Technology, 2008, 16(4): 236–239. doi: 10.13695/j.cnki.12-1222/o3.2008.02.03
    劉菲, 任章, 李青東. 基于小波方差的MEMS IMU隨機誤差模型間接估計方法[J]. 中國慣性技術(shù)學(xué)報, 2016, 24(1): 77–82. doi: 10.13695/j.cnki.12-1222/o3.2016.01.014

    LIU Fei, REN Zhang, and LI Qingdong. Indirect estimation method for random error models of MEMS IMU based on wavelet variance[J]. Journal of Chinese Inertial Technology, 2016, 24(1): 77–82. doi: 10.13695/j.cnki.12-1222/o3.2016.01.014
  • 加載中
圖(8) / 表(5)
計量
  • 文章訪問數(shù):  2921
  • HTML全文瀏覽量:  899
  • PDF下載量:  108
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2018-06-13
  • 修回日期:  2018-12-25
  • 網(wǎng)絡(luò)出版日期:  2019-01-04
  • 刊出日期:  2019-05-01

目錄

    /

    返回文章
    返回