一種超寬帶10 GHz微波光子雷達(dá)包絡(luò)與相位聯(lián)合運(yùn)動(dòng)誤差估計(jì)方法
doi: 10.11999/JEIT180563
-
1.
西安電子科技大學(xué)雷達(dá)信號(hào)處理國家重點(diǎn)實(shí)驗(yàn)室 ??西安 ??710071
-
2.
西安電子科技大學(xué)信息感知技術(shù)協(xié)同創(chuàng)新中心 ??西安 ??710071
A Motion Error Estimation Method Joint Envelope and Phase for 10 GHz Ultra-wideband Microwave Photonic-based SAR Image
-
1.
National Laboratory of Radar Signal Processing, XidianUniversity, Xi’an 710071, China
-
2.
CollaborativeInnovationCenter of Information Sensing and Understand, XidianUniversity, Xi’an 710071, China
-
摘要:
由于運(yùn)動(dòng)誤差嚴(yán)重的2維空變性,對(duì)于10 GHz超寬帶微波光子SAR,傳統(tǒng)的直接從相位進(jìn)行運(yùn)動(dòng)誤差估計(jì)的方法估計(jì)精度不高。因此,該文提出一種包絡(luò)與相位聯(lián)合的超高分辨運(yùn)動(dòng)誤差估計(jì)方法,能夠在沒有慣導(dǎo)信息時(shí)實(shí)現(xiàn)運(yùn)動(dòng)誤差的精確估計(jì)。該方法首先在距離徙動(dòng)矯正(RCMC)之前,通過對(duì)包絡(luò)對(duì)齊算法(RAA)提取的包絡(luò)信息采用最小二乘算法(LSA)與梯度下降算法(GDA)獲得近似的3維運(yùn)動(dòng)誤差。接著,對(duì)粗補(bǔ)償與RCMC之后的數(shù)據(jù),先消除方位相位空變,然后采用兩維空變的相位誤差估計(jì)方法獲得剩余運(yùn)動(dòng)誤差的精確估計(jì)。仿真和車載微波光子雷達(dá)實(shí)測數(shù)據(jù)驗(yàn)證了該方法的有效性。
-
關(guān)鍵詞:
- 超寬帶SAR /
- 超高分辨SAR /
- 空變運(yùn)動(dòng)誤差估計(jì) /
- 微波光子雷達(dá)成像 /
- 車載SAR
Abstract:Due to the 2-D vacancies with serious motion errors when processing 10 GHz ultra-wideband microwave photonic-based SAR, current motion error estimation methods directly estimating with phase error can not obtain correct estimation result in this paper. An ultra-high resolution SAR motion error estimation method jointing envelope and phase is proposed, which can realize accurate estimation of motion error without inertial information. Firstly, the approximate 3-D motion error is obtained by applying the Least Squares Algorithm (LSA) and the Gradient Descent Algorithm (GDA) to the envelope information extracted by the Range Alignment Algorithm (RAA) before Range Curve Migration Correction (RCMC). Then, phase-based motion error estimation is performed on the data after rough compensation and RCMC. After eliminating the azimuth variant phase error, the 2-D space-variant phase error estimation method is used to obtain accurate estimation of residual motion error. Processing of simulated data and real data acquired from vehicle-borne microwave photonic-based radar validates the effectiveness of the proposed method.
-
表 1 雷達(dá)系統(tǒng)參數(shù)
參數(shù) 值 參數(shù) 值 中心頻率(GHz) 35 飛行速度(km/h) 10 帶寬(GHz) 10 俯仰角(°) 13 采用頻率(MHz) 500 距離分辨率(cm) 1.5 脈沖重復(fù)頻率(Hz) 666 方位分辨率(cm) 2.5 中心斜距(m) 150 下載: 導(dǎo)出CSV
-
FORNARO G. Trajectory deviations in airborne SAR: Analysis and compensation[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(3): 997–1009. doi: 10.1109/7.784069 FORNARO G, FRANCESCHETTI G, and PERNA S. On center-beam approximation in SAR motion compensation[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(2): 276–280. doi: 10.1109/lgrs.2005.863391 MAO Xinhua, ZHU Daiyin, and ZHU Zhaoda. Polar format algorithm wavefront curvature compensation under arbitrary radar flight path[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(3): 526–530. doi: 10.1109/lgrs.2011.2173291 YANG Lei, XING Mengdao, WANG Yong, et al. Compensation for the NsRCM and phase error after polar format resampling for airborne spotlight SAR raw data of high resolution[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(1): 165–169. doi: 10.1109/lgrs.2012.2196676 MAO Xinhua, HE Xueli, DING Lan, et al. Ultra-high resolution (0.05 m) SAR image formation processing[C]. IEEE ISAP, Phuket, Thailand, 2017: 1–2. BERNNER A. Ultra-high resolution airborne SAR imaging of vegetation and man-made objects based on 40-relative bandwidth in X-band[C]. IGARSS, Munich, Germany, 2012: 7397–7400. ZHANG Lei, WANG Guanyong, QIAO Zhijun, et al. Azimuth motion compensation with improved subaperture algorithm for airborne SAR imaging[J]. IEEE Journal of Selected Topics in Applied Earth Observation and Remote Sensing, 2017, 10(1): 184–193. doi: 10.1109/jstars.2016.2577588 CHEN Jianlai, XING Mengdao, SUN Guangcai, et al. A 2-D space-variant motion estimation and compensation method for ultrahigh-resolution airborne stepped-frequency SAR with long integration time[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(11): 6390–6401. doi: 10.1109/tgrs.2017.2727060 CANTALLOUBE H. SAR retrieval of a ship vertical profile from her roll and pitch motion[C]. European Conference on Synthetic Aperture Radar, Offenbach, Germany, 2014: 1–4. YANG Mingdong, ZHU Daiyin, and SONG Wei. Comparison of two-step and one-step motion compensation algorithms for airborne synthetic aperture radar[J]. Electronics Letters, 2015, 51(14): 1108–1110. doi: 10.1049/el.2015.1350 REIGBER A, ALIVIZATOS E, POTSIS A, et al. Extended wavenumber-domain synthetic aperture radar focusing with integrated motion compensation[J]. IEE Proceedings - Radar, Sonar and Navigation, 2006, 153(3): 301–310. doi: 10.1049/ip-rsn:20045087 XU Gang, XING Mengdao, ZHANG Lei, et al. Robust autofocusing approach for highly squinted SAR imagery using the extended wavenumber algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(10): 5031–5046. doi: 10.1109/tgrs.2013.2276112 HONGBON J. Aperture synthesis with a non-regular distribution of interferometer baselines[J]. Astronomy and Astrophysics Supplement series, 1974, 15(3): 417–426. ZHOU Song, YANG Lei, ZHAO Lifan, et al. Forward velocity extraction from UAV raw SAR data based on adaptive notch filtering[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(9): 1211–1215. doi: 10.1109/lgrs.2016.2576359 WEHNER D. High Resolution Radar[M]. Norwood: Ma Artech House Inc P, 1987. CHEN Chungching and ANDREWS C. Target-motion-induced radar imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 1980, 16(1): 2–14. doi: 10.1109/taes.1980.308873 WANG Kun, LUO Lin, and BAO Zhen. Global optimum method for alignment in ISAR imagery[C]. Radar Systems, Edinburgh, Britain, 1997: 233–235. WO Jianghai, WANG anle, ZHANG Jin, et al. Wideband tunable microwave generation using a dispersion compensated optoelectronic oscillator[C]. IEEE OECC and PGC, 2017: 1–2. LAGHEZZA F, SCOTTI F, ONORI D, et al. ISAR imaging of non-cooperative targets via dual band photonics-based radar system[C]. IEEE International Radar Symposium, Philadelphia, American, 2016: 1–4. -