一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

一種超寬帶10 GHz微波光子雷達(dá)包絡(luò)與相位聯(lián)合運(yùn)動(dòng)誤差估計(jì)方法

陳瀟翔 邢孟道 孫光才 景國彬

陳瀟翔, 邢孟道, 孫光才, 景國彬. 一種超寬帶10 GHz微波光子雷達(dá)包絡(luò)與相位聯(lián)合運(yùn)動(dòng)誤差估計(jì)方法[J]. 電子與信息學(xué)報(bào), 2019, 41(5): 1069-1076. doi: 10.11999/JEIT180563
引用本文: 陳瀟翔, 邢孟道, 孫光才, 景國彬. 一種超寬帶10 GHz微波光子雷達(dá)包絡(luò)與相位聯(lián)合運(yùn)動(dòng)誤差估計(jì)方法[J]. 電子與信息學(xué)報(bào), 2019, 41(5): 1069-1076. doi: 10.11999/JEIT180563
Xiaoxiang CEHN, Mengdao XING, Guangcai SUN, Guobin JING. A Motion Error Estimation Method Joint Envelope and Phase for 10 GHz Ultra-wideband Microwave Photonic-based SAR Image[J]. Journal of Electronics & Information Technology, 2019, 41(5): 1069-1076. doi: 10.11999/JEIT180563
Citation: Xiaoxiang CEHN, Mengdao XING, Guangcai SUN, Guobin JING. A Motion Error Estimation Method Joint Envelope and Phase for 10 GHz Ultra-wideband Microwave Photonic-based SAR Image[J]. Journal of Electronics & Information Technology, 2019, 41(5): 1069-1076. doi: 10.11999/JEIT180563

一種超寬帶10 GHz微波光子雷達(dá)包絡(luò)與相位聯(lián)合運(yùn)動(dòng)誤差估計(jì)方法

doi: 10.11999/JEIT180563
基金項(xiàng)目: 國家重點(diǎn)研發(fā)計(jì)劃(2017YFC1405600),國家自然科學(xué)基金創(chuàng)新群體基金(61621005)
詳細(xì)信息
    作者簡介:

    陳瀟翔:男,1994年生,博士,研究方向?yàn)闄C(jī)載高分辨SAR成像

    邢孟道:男,1975年生,教授,研究方向?yàn)镾AR/ISAR成像、動(dòng)目標(biāo)檢測

    孫光才:男,1984年生,副教授,研究方向?yàn)槎嗤ǖ啦ㄊ赶騍AR成像、SAR動(dòng)目標(biāo)成像等

    景國彬:男,1990年生,博士,研究方向?yàn)闄C(jī)載/星載高分辨SAR成像

    通訊作者:

    陳瀟翔 graceful1900@163.com

  • 中圖分類號(hào): TN958

A Motion Error Estimation Method Joint Envelope and Phase for 10 GHz Ultra-wideband Microwave Photonic-based SAR Image

Funds: The State Key Research Development Program (2017YFC1405600), The Foundation for Innovative Research Groups of the National Natural Science Foundation of China (61621005)
  • 摘要:

    由于運(yùn)動(dòng)誤差嚴(yán)重的2維空變性,對(duì)于10 GHz超寬帶微波光子SAR,傳統(tǒng)的直接從相位進(jìn)行運(yùn)動(dòng)誤差估計(jì)的方法估計(jì)精度不高。因此,該文提出一種包絡(luò)與相位聯(lián)合的超高分辨運(yùn)動(dòng)誤差估計(jì)方法,能夠在沒有慣導(dǎo)信息時(shí)實(shí)現(xiàn)運(yùn)動(dòng)誤差的精確估計(jì)。該方法首先在距離徙動(dòng)矯正(RCMC)之前,通過對(duì)包絡(luò)對(duì)齊算法(RAA)提取的包絡(luò)信息采用最小二乘算法(LSA)與梯度下降算法(GDA)獲得近似的3維運(yùn)動(dòng)誤差。接著,對(duì)粗補(bǔ)償與RCMC之后的數(shù)據(jù),先消除方位相位空變,然后采用兩維空變的相位誤差估計(jì)方法獲得剩余運(yùn)動(dòng)誤差的精確估計(jì)。仿真和車載微波光子雷達(dá)實(shí)測數(shù)據(jù)驗(yàn)證了該方法的有效性。

  • 圖  1  數(shù)據(jù)獲取模型

    圖  2  算法流程圖

    圖  4  本文所提方法關(guān)鍵步驟結(jié)果圖

    圖  3  仿真場景與添加的3維運(yùn)動(dòng)誤差

    圖  5  徙動(dòng)校正結(jié)果補(bǔ)償前后對(duì)比圖

    圖  6  子孔徑方位空變補(bǔ)償前后對(duì)比圖

    圖  7  誤差估計(jì)結(jié)果圖

    圖  8  徙動(dòng)校正結(jié)果對(duì)比圖

    圖  9  雷峰塔微波光子雷達(dá)成像結(jié)果對(duì)比圖

    表  1  雷達(dá)系統(tǒng)參數(shù)

    參數(shù) 參數(shù)
    中心頻率(GHz) 35 飛行速度(km/h) 10
    帶寬(GHz) 10 俯仰角(°) 13
    采用頻率(MHz) 500 距離分辨率(cm) 1.5
    脈沖重復(fù)頻率(Hz) 666 方位分辨率(cm) 2.5
    中心斜距(m) 150
    下載: 導(dǎo)出CSV
  • FORNARO G. Trajectory deviations in airborne SAR: Analysis and compensation[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(3): 997–1009. doi: 10.1109/7.784069
    FORNARO G, FRANCESCHETTI G, and PERNA S. On center-beam approximation in SAR motion compensation[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(2): 276–280. doi: 10.1109/lgrs.2005.863391
    MAO Xinhua, ZHU Daiyin, and ZHU Zhaoda. Polar format algorithm wavefront curvature compensation under arbitrary radar flight path[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(3): 526–530. doi: 10.1109/lgrs.2011.2173291
    YANG Lei, XING Mengdao, WANG Yong, et al. Compensation for the NsRCM and phase error after polar format resampling for airborne spotlight SAR raw data of high resolution[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(1): 165–169. doi: 10.1109/lgrs.2012.2196676
    MAO Xinhua, HE Xueli, DING Lan, et al. Ultra-high resolution (0.05 m) SAR image formation processing[C]. IEEE ISAP, Phuket, Thailand, 2017: 1–2.
    BERNNER A. Ultra-high resolution airborne SAR imaging of vegetation and man-made objects based on 40-relative bandwidth in X-band[C]. IGARSS, Munich, Germany, 2012: 7397–7400.
    ZHANG Lei, WANG Guanyong, QIAO Zhijun, et al. Azimuth motion compensation with improved subaperture algorithm for airborne SAR imaging[J]. IEEE Journal of Selected Topics in Applied Earth Observation and Remote Sensing, 2017, 10(1): 184–193. doi: 10.1109/jstars.2016.2577588
    CHEN Jianlai, XING Mengdao, SUN Guangcai, et al. A 2-D space-variant motion estimation and compensation method for ultrahigh-resolution airborne stepped-frequency SAR with long integration time[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(11): 6390–6401. doi: 10.1109/tgrs.2017.2727060
    CANTALLOUBE H. SAR retrieval of a ship vertical profile from her roll and pitch motion[C]. European Conference on Synthetic Aperture Radar, Offenbach, Germany, 2014: 1–4.
    YANG Mingdong, ZHU Daiyin, and SONG Wei. Comparison of two-step and one-step motion compensation algorithms for airborne synthetic aperture radar[J]. Electronics Letters, 2015, 51(14): 1108–1110. doi: 10.1049/el.2015.1350
    REIGBER A, ALIVIZATOS E, POTSIS A, et al. Extended wavenumber-domain synthetic aperture radar focusing with integrated motion compensation[J]. IEE Proceedings - Radar, Sonar and Navigation, 2006, 153(3): 301–310. doi: 10.1049/ip-rsn:20045087
    XU Gang, XING Mengdao, ZHANG Lei, et al. Robust autofocusing approach for highly squinted SAR imagery using the extended wavenumber algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(10): 5031–5046. doi: 10.1109/tgrs.2013.2276112
    HONGBON J. Aperture synthesis with a non-regular distribution of interferometer baselines[J]. Astronomy and Astrophysics Supplement series, 1974, 15(3): 417–426.
    ZHOU Song, YANG Lei, ZHAO Lifan, et al. Forward velocity extraction from UAV raw SAR data based on adaptive notch filtering[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(9): 1211–1215. doi: 10.1109/lgrs.2016.2576359
    WEHNER D. High Resolution Radar[M]. Norwood: Ma Artech House Inc P, 1987.
    CHEN Chungching and ANDREWS C. Target-motion-induced radar imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 1980, 16(1): 2–14. doi: 10.1109/taes.1980.308873
    WANG Kun, LUO Lin, and BAO Zhen. Global optimum method for alignment in ISAR imagery[C]. Radar Systems, Edinburgh, Britain, 1997: 233–235.
    WO Jianghai, WANG anle, ZHANG Jin, et al. Wideband tunable microwave generation using a dispersion compensated optoelectronic oscillator[C]. IEEE OECC and PGC, 2017: 1–2.
    LAGHEZZA F, SCOTTI F, ONORI D, et al. ISAR imaging of non-cooperative targets via dual band photonics-based radar system[C]. IEEE International Radar Symposium, Philadelphia, American, 2016: 1–4.
  • 加載中
圖(9) / 表(1)
計(jì)量
  • 文章訪問數(shù):  1893
  • HTML全文瀏覽量:  588
  • PDF下載量:  78
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2018-06-08
  • 修回日期:  2018-12-20
  • 網(wǎng)絡(luò)出版日期:  2019-01-04
  • 刊出日期:  2019-05-01

目錄

    /

    返回文章
    返回