基于多尺度信息熵的雷達(dá)輻射源信號識別
doi: 10.11999/JEIT180535
-
西南交通大學(xué)電氣工程學(xué)院? ?成都? ?610031
Radar Emitter Signal Identification Based on Multi-scale Information Entropy
-
College of Electrical Engineering, Southwest Jiao Tong University, Chengdu 610031, China
-
摘要:
隨著雷達(dá)信號的日益復(fù)雜,從實數(shù)序列中提取特征變得越來越困難,但當(dāng)它們表示成符號序列時,通常能更容易地挖掘出有效的特征參數(shù)。因此,該文提出一種基于多尺度信息熵(MSIE)的雷達(dá)信號識別方法。首先通過符號聚合近似(SAX)算法在不同字符集尺度下將雷達(dá)信號轉(zhuǎn)換為符號化序列;然后聯(lián)合各符號序列的信息熵值,組成MSIE特征向量;最后,使用k鄰近算法(k-NN)作為分類器實現(xiàn)雷達(dá)信號的分類識別。通過仿真6種典型的雷達(dá)信號進(jìn)行驗證,結(jié)果表明該方法在信噪比(SNR)為5 dB時,不同雷達(dá)信號的識別正確率大于90%,并且優(yōu)于傳統(tǒng)的基于復(fù)雜度特征(盒維數(shù)和稀疏性)的識別方法。
-
關(guān)鍵詞:
- 雷達(dá)信號識別 /
- 符號聚合近似算法 /
- 多尺度信息熵 /
- k鄰近算法
Abstract:With the increasing complexity of radar signals, it is more and more difficult to extract features of the real sequences, but when they are transformed to a symbol sequence, it is usually easier to mine the effective feature parameters. Therefore, a radar signal recognition method based on Multi-Scale Information Entropy (MSIE) is proposed. Firstly, the radar signal is transformed into symbolic sequence by Symbolic Aggregate approXimation (SAX) algorithm under different character number scales. Then, the information entropy of each symbol sequence is combined to form the MSIE feature vector. Finally, the k-Nearest Neighbor (k-NN) is used as a classifier to realize the classification and identification of radar signals. The simulation results of 6 typical radar signals show that using the proposed method the correct recognition rate of different radar signals is greater than 90% when Signal to Noise Ratio (SNR) is 5 dB, and better performance can be obtaned conpared with the traditional identification method based on complexity characteristics (box-dimension and sparseness).
-
表 1 參數(shù)a從3~8的等概率斷點查詢表[12]
斷點(${\beta _i}$) 字符集大小(a) 3 4 5 6 7 8 ${\beta _{{1}}}$ 0.43 0.67 0.84 0.97 1.07 1.15 ${\beta _{{2}}}$ 0.43 0 0.25 0.43 0.57 0.67 ${\beta _{{3}}}$ – 0.67 0.25 0 0.18 0.32 ${\beta _{{4}}}$ – – 0.84 0.43 0.18 0 ${\beta _{{5}}}$ – – – 0.97 0.57 0.32 ${\beta _{{6}}}$ – – – – 1.07 0.67 ${\beta _{{7}}}$ – – – – – 1.15 下載: 導(dǎo)出CSV
表 2 不同SNR下6種雷達(dá)信號的識別率
雷達(dá)信號 信噪比SNR (dB) 20 15 10 5 LFM 1.000 1.000 1.000 0.985 CP 1.000 1.000 1.000 1.000 BPSK 0.975 0.990 0.990 1.000 BFSK 0.930 0.910 0.800 0.700 NLFM 1.000 1.000 1.000 1.000 COSTAS 1.000 1.000 1.000 1.000 下載: 導(dǎo)出CSV
表 5 3種方法的總體識別正確率比較(%)
識別方法 信噪比SNR(dB) 20 15 10 5 MSIE+k-NN 98.42 97.25 94.25 91.25 CC+k-NN 80.25 73.08 54.33 <50 SIE+k-NN 81.42 79.08 71.25 62.92 下載: 導(dǎo)出CSV
-
WILEY R G. ELINT: The Interception and Analysis of Radar Signals[M]. Norwood, USA: Artech House, 2006: 1–15. 韓俊, 何明浩, 朱振波, 等. 基于復(fù)雜度特征的未知雷達(dá)輻射源信號分選[J]. 電子與信息學(xué)報, 2009, 31(11): 2552–2556.HAN Jun, HE Minghao, ZHU Zhenbo, et al. Sorting unknown radar emitter signal based on the complexity characteristics[J]. Journal of Electronics &Information Technology, 2009, 31(11): 2552–2556. 曲志昱, 毛校潔, 侯長波. 基于奇異值熵和分形維數(shù)的雷達(dá)信號識別[J]. 系統(tǒng)工程與電子技術(shù), 2018, 40(2): 303–307. doi: 10.3969/j.issn.1001-506X.2018.02.10QU Zhiyu, MAO Xiaojie, and HOU Changbo. Radar signal recognition based on singular value entropy and fractal dimension[J]. Systems Engineering and Electronics, 2018, 40(2): 303–307. doi: 10.3969/j.issn.1001-506X.2018.02.10 LI Jingchao and YING Yulong. Radar signal recognition algorithm based on entropy theory[C]. Proceedings of the 2nd International Conference on Systems and Informatics, Shanghai, China, 2014: 718–723. GUO Yuanyuan and ZHANG Xudong. Radar signal classification based on cascade of STFT, PCA and na?ve Bayes[C]. Proceedings of the 7th International Conference on Intelligent Systems, Modelling and Simulation, Bangkok, Thailand, 2016: 191–196. DUDCZYK J. A method of feature selection in the aspect of specific identification of radar signals[J]. Bulletin of the Polish Academy of Sciences Technical Sciences, 2017, 65(1): 113–119. doi: 10.1515/bpasts-2017-0014 GUO Qiang, NAN Polong, and WAN Jian. Signal classification method based on data mining for multi-mode radar[J]. Journal of Systems Engineering and Electronics, 2016, 27(5): 1010–1017. doi: 10.21629/JSEE.2016.05.09 KONOPKO K, GRISHIN Y P, and JA?CZAK D. Radar signal recognition based on time-frequency representations and multidimensional probability density function estimator[C]. Proceedings of 2015 Signal Processing Symposium, D?be, Poland, 2015: 1–6. 陳韜偉, 金煒東. 雷達(dá)輻射源信號符號化脈內(nèi)特征提取方法[J]. 數(shù)據(jù)采集與處理, 2008, 23(5): 521–526. doi: 10.3969/j.issn.1004-9037.2008.05.004CHEN Taowei and JIN Weidong. Intra-pulse feature extraction of radar emitter signals based on symbolization method[J]. Journal of Data Acquisition &Processing, 2008, 23(5): 521–526. doi: 10.3969/j.issn.1004-9037.2008.05.004 CHEN Taowei and JIN Weidong. Feature extraction of radar emitter signals based on symbolic time series analysis[C]. Proceedings of 2007 International Conference on Wavelet Analysis and Pattern Recognition, Beijing, China, 2007: 1277–1282. CHEN Taowei, LIU Zugen, LI Jie, et al. Symbolic time series analysis for measuring complexity in radar emitter signals[C]. Proceedings of the 7th International Congress on Image and Signal Processing, Dalian, China, 2014: 918–922. LIN J, KEOGH E, WEI Li, et al. Experiencing SAX: A novel symbolic representation of time series[J]. Data Mining and Knowledge Discovery, 2007, 15(2): 107–144. doi: 10.1007/s10618-007-0064-z SONG Wei, WANG Zhiguang, ZHANG Fan, et al. Empirical study of symbolic aggregate approximation for time series classification[J]. Intelligent Data Analysis, 2017, 21(1): 135–150. doi: 10.3233/IDA-150351 向馗, 蔣靜坪. 時間序列的符號化方法研究[J]. 模式識別與人工智能, 2007, 20(2): 154–161. doi: 10.3969/j.issn.1003-6059.2007.02.003XIANG Kui and JIANG Jingping. Study on symbolization analysis of time series[J]. Pattern Recognition and Artificial Intelligence, 2007, 20(2): 154–161. doi: 10.3969/j.issn.1003-6059.2007.02.003 KEOGH E, CHAKRABARTI K, PAZZANI M, et al. Dimensionality reduction for fast similarity search in large time series databases[J]. Knowledge and Information Systems, 2001, 3(3): 263–286. doi: 10.1007/PL00011669 余志斌. 基于脈內(nèi)特征的雷達(dá)輻射源信號識別研究[D]. [博士論文], 西南交通大學(xué), 2010: 1–56.YU Zhibin. Study on radar emitter signal identification based on intra-pulse features[D]. [Ph.D. dissertation], Southwest Jiaotong University, 2010: 1–56. VAN DER MAATEN A and HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008(9): 2579–2605. -