異構(gòu)無線網(wǎng)絡(luò)中基于人工神經(jīng)網(wǎng)絡(luò)的自適應(yīng)垂直切換算法
doi: 10.11999/JEIT180534
-
1.
重慶郵電大學(xué)計算機科學(xué)與技術(shù)學(xué)院 ??重慶 ??400065
-
2.
重慶郵電大學(xué)重慶市計算機網(wǎng)絡(luò)與通信技術(shù)重點實驗室 ??重慶 ??400065
An Adaptive Vertical Handover Algorithm Based on Artificial Neural Network in Heterogeneous Wireless Networks
-
1.
Institute of Computer Science and Technology, Chongqing University of Post and Telecommunications, Chongqing 400065, China
-
2.
Chongqing Key Laboratory of Computer Network and Communication Technology, Chongqing University of Post and Telecommunications, Chongqing 400065, China
-
摘要: 針對當(dāng)前基于人工神經(jīng)網(wǎng)絡(luò)的垂直切換算法(ANN-VHO),存在業(yè)務(wù)自適應(yīng)性差和計算復(fù)雜度高的問題,該文提出一種基于人工神經(jīng)網(wǎng)絡(luò)的自適應(yīng)垂直切換算法。首先,根據(jù)終端獲取到的接收信號強度(RSS),采用閾值判斷的方法,遴選出候選網(wǎng)絡(luò)集;其次,根據(jù)該文劃分的不同業(yè)務(wù)類型,對參數(shù)進(jìn)行自適應(yīng)選擇和歸一化;再次,把選擇的參數(shù)輸入人工神經(jīng)網(wǎng)絡(luò),判決出候選網(wǎng)絡(luò)集中最佳的接入網(wǎng)絡(luò)。最后,實驗結(jié)果表明,該算法能根據(jù)用戶的業(yè)務(wù)類型合理地選擇切換網(wǎng)絡(luò),降低切換阻塞率,同時降低算法的時間復(fù)雜度。
-
關(guān)鍵詞:
- 異構(gòu)無線網(wǎng)絡(luò) /
- 業(yè)務(wù)類型 /
- 自適應(yīng)選擇 /
- 神經(jīng)網(wǎng)絡(luò)
Abstract: Current research on Vertical HandOver algorithm based on Artificial Neural Network (ANN-VHO) has a poor service adaptability and high computational complexity. Considering this problem, an adaptive vertical handover algorithm based on artificial neural network is proposed. Firstly, according to the Received Signal Strength (RSS) obtained by the terminal, a method of thresholding is used to select a candidate network set. Secondly, in terms of the different types of services classified in this paper, the parameters are normalized and adaptively selected; Thirdly, the selected parameters are input into the artificial neural network to choose the best access network from the candidate network. Finally, the experimental results show that the algorithm can reasonably select the handover network according to the user's service type, reduce the handover blocking rate and lower the time complexity of the algorithm.-
Key words:
- Heterogeneous wireless networks /
- Type of service /
- Adaptive selection /
- Neural network
-
表 1 各參數(shù)的范圍值
業(yè)務(wù) 帶寬(kbps) 時延(ms) 抖動(ms) 丟包率(×10–6) 會話類 30~100 5~40 交互類 50~270 1~100 流類 50~10000 10~50 后臺類 10~1000 10~1000 下載: 導(dǎo)出CSV
表 2 候選網(wǎng)絡(luò)的參數(shù)值
網(wǎng)絡(luò) 帶寬(kbps) 時延(ms) 抖動(ms) 丟包率(×10–6) LTE 310 48 9 28 WLAN1 4100 105 38 9 WLAN2 6900 180 67 1 WLAN3 3400 50 17 1 WLAN4 2300 60 11 20 WLAN5 5600 91 12 16 下載: 導(dǎo)出CSV
-
STEVENS-NAVARRO E and WONG V W S. Comparison between vertical handoff decision algorithms for heterogeneous wireless networks[C]. Proceedings of the 2006 IEEE 63rd Vehicular Technology Conference, Melbourne, Australia, 2006: 947–951. HAIDER A, GONDAL I, and KAMRUZZAMAN J. Dynamic dwell timer for hybrid vertical handover in 4G coupled networks[C]. Proceedings of the 2011 IEEE 73rd Vehicular Technology Conference, Yokohama, Japan, 2011: 1–5. LEE S K, SRIRAM K, KIM K, et al. Vertical handoff decision algorithms for providing optimized performance in heterogeneous wireless networks[J]. IEEE Transactions on Vehicular Technology, 2009, 58(2): 865–881. doi: 10.1109/TVT.2008.925301. SINGH N P and SINGH B. Vertical handoff decision in 4G wireless networks using multi attribute decision making approach[J]. Wireless Networks, 2014, 20(5): 1203–1211. doi: 10.1007/s11276-013-0670-1. BHOSALE S and DARUWALA R. Multi-criteria vertical handoff decision algorithm using hierarchy modeling and additive weighting in an integrated WLAN/WiMAX/UMTS environment-A case study[J]. KSII Transactions on Internet and Information Systems, 2014, 8(1): 35–57. doi: 10.3837/tiis.2014.01.003 LAHBY M and SEKKAKI A. Optimal vertical handover based on TOPSIS algorithm and utility function in heterogeneous wireless networks[C]. Proceedings of the 2017 International Symposium on Networks, Computers and Communications, Marrakech, Morocco, 2017: 1–6. YU Chenghai, MA Dawei, WANG Feng, et al. A novel vertical handoff algorithm based on differential pre-decision and improved utility-function method[J]. International Journal of Future Generation Communication and Networking, 2016, 9(3): 87–96. doi: 10.14257/ijfgcn.2016.9.3.09 TSAI K L, LIU Hanyun, and LIU Yuwei. Using fuzzy logic to reduce ping-pong handover effects in LTE networks[J]. Soft Computing, 2016, 20(5): 1683–1694. doi: 10.1007/s00500-015-1655-z. KUSTIAWAN I, LIU Chunyi, and HSU D F. Vertical handoff decision using fuzzification and combinatorial fusion[J]. IEEE Communications Letters, 2017, 21(9): 2089–2092. doi: 10.1109/LCOMM.2017.2709750 馬彬, 張文靜, 謝顯中. 面向終端個性化服務(wù)的模糊垂直切換算法[J]. 電子與信息學(xué)報, 2017, 39(6): 1284–1290. doi: 10.11999/JEIT160839MA Bin, ZHANG Wenjing, and XIE Xianzhong. Individualization service oriented fuzzy vertical handover algorithm[J]. Journal of Electronics &Information Technology, 2017, 39(6): 1284–1290. doi: 10.11999/JEIT160839 LI Limin, MA Lin, XU Yubin, et al. Motion adaptive vertical handoff in cellular/WLAN heterogeneous wireless network[J]. The Scientific World Journal, 2014, 2014: 341038. doi: 10.1155/2014/341038 NASSER N, GUIZANI S, and Al-MASRI E. Middleware vertical handoff manager: A neural network-based solution[C]. Proceedings of the 2007 IEEE International Conference on Communications, Glasgow, UK, 2007: 5671–5676. ?ALHAN A and ?EKEN C. Artificial neural network based vertical handoff algorithm for reducing handoff latency[J]. Wireless Personal Communications, 2013, 71(4): 2399–2415. doi: 10.1007/s11277-012-0944-4 NURJAHAN, RAHMAN S, SHARMA T, et al. PSO-NF based vertical handoff decision for ubiquitous heterogeneous wireless network(UHWN)[C]. Proceedings of the 2016 International Workshop on Computational Intelligence, Dhaka, Bangladesh, 2017: 153–158. ALSAMHI S H and RAJPUT N S. An intelligent hand-off algorithm to enhance quality of service in high altitude platforms using neural network[J]. Wireless Personal Communications, 2015, 82(4): 2059–2073. doi: 10.1007/s11277-015-2333-2. ZINEB A B, AYADI M, and TABBANE S. QoE-based vertical handover decision management for cognitive networks using ANN[C]. Proceedings of the 2017 Sixth International Conference on Communications and Networking, Hammamet, Tunisia, 2017: 1–7. -