面向OFDM的同時(shí)同頻全雙工雙向高譜效中繼方案
doi: 10.11999/JEIT180451
-
1.
西安電子科技大學(xué)綜合業(yè)務(wù)網(wǎng)理論及關(guān)鍵技術(shù)國(guó)家重點(diǎn)實(shí)驗(yàn)室 ??西安 ??710071
-
2.
中國(guó)電子科技集團(tuán)公司數(shù)據(jù)鏈技術(shù)重點(diǎn)實(shí)驗(yàn)室 ??西安 ??710068
High Spectrum Efficiency Full-duplex Two-way Relay Scheme for OFDM
-
1.
State Key Laboratory of Integrated Service Network, Xidian University, Xi’an 710071, China
-
2.
Key Laboratory of Data Link, China Electronics Technology Group Corporation, Xi’an 710068, China
-
摘要:
針對(duì)同時(shí)同頻全雙工雙向中繼網(wǎng)絡(luò),該文提出一種對(duì)中繼剩余自干擾信號(hào)具有魯棒性的雙向中繼傳輸方案。該文首先對(duì)中繼剩余自干擾信號(hào)進(jìn)行分析,將無限迭代的剩余自干擾信號(hào)建模成等效多徑信號(hào),并利用OFDM的循環(huán)前綴對(duì)抗等效多徑現(xiàn)象,以降低中繼剩余自干擾信號(hào)對(duì)系統(tǒng)傳輸性能的影響。在等效多徑方案的基礎(chǔ)上,以系統(tǒng)信干噪比最大化為目標(biāo),推導(dǎo)出全雙工雙向中繼傳輸?shù)淖罴逊糯笠蜃忧蠼夥椒?。最后,通過仿真驗(yàn)證所提出的雙向中繼傳輸方案的有效性。
-
關(guān)鍵詞:
- 無線通信 /
- 全雙工 /
- 中繼傳輸 /
- 等效多徑 /
- 放大轉(zhuǎn)發(fā)
Abstract:For the full-duplex two-way relay network, a two-way relay transmission scheme that is robust to the relay residual self-interference signal is proposed. Firstly, the residual self-interference signal of the relay is analyzed, the infinite self-interfering signal is modeled as an equivalent multipath signal, and the cyclic prefix of OFDM is used to combat the equivalent multipath phenomenon to reduce the residual self-interference signal impact. Based on the equivalent multipath scheme, the paper aims at maximizing the SINR of the system, and deduces the optimal amplification factor solving method of the relay in bidirectional full-duplex relay transmission. Finally, the simulation verifies the correctness of the optimal amplification factor of relay, and the effectiveness of the proposed two-way relay transmission scheme is verified through simulation.
-
Key words:
- Wireless communication /
- Full-duplex /
- Relay transmission /
- Equivalent multipath /
- Amplify and forward
-
表 1 信號(hào)x1(1)和x2(1)在各節(jié)點(diǎn)處的傳輸情況
時(shí)隙$i$ 0 1 ··· $i$ ··· ${r^{\left( 1 \right)}}(i)$ ${{h}_{1r}}{x_1}(1) + {{h}_{2r}}{x_2}(1)$ ${(\beta {{h}_{{\rm{li}}}})^1}({{h}_{1r}}{x_1}(1) + {{h}_{2r}}{x_2}(1))$ ··· ${(\beta {{h}_{{\rm{li}}}})^i}({{h}_{1r}}{x_1}(1) + {{h}_{2r}}{x_2}(1))$ ··· ${t^{\left( 1 \right)}}(i)$ 0 $\beta ({{h}_{1r}}{x_1}(1) + {{h}_{2r}}{x_2}(1))$ ··· ${(\beta {{h}_{{\rm{li}}}})^{i - 1}}\beta ({{h}_{1r}}{x_1}(1) + {{h}_{2r}}{x_2}(1))$ ··· $y_{1}^{\left( 1 \right)}(i)$ ${{h}_{{\rm{12}}}}{x_2}(1)$ $\beta {{h}_{1r}}{{h}_{2r}}{x_2}(1)$ ··· ${(\beta {{h}_{{\rm{li}}}})^{i - 1}}\beta {{h}_{1r}}{{h}_{2r}}{x_2}(1)$ ··· $y_{2}^{\left( 1 \right)}(i)$ ${{h}_{{\rm{12}}}}{x_1}(1)$ $\beta {{h}_{1r}}{{h}_{2r}}{x_1}(1)$ ··· ${(\beta {{h}_{{\rm{li}}}})^{i - 1}}\beta {{h}_{1r}}{{h}_{2r}}{x_1}(1)$ ··· 下載: 導(dǎo)出CSV
-
SENDONARIS A, ERKIP E, and AAZHANG B. User cooperation diversity—Part I: System description[J]. IEEE Transactions on Communications, 2003, 51(11): 1927–1938. doi: 10.1109/TCOMM.2003.818096 SENDONARIS A, ERKIP E, and AAZHANG B. User cooperation diversity—Part II: Implementation aspects and performance analysis[J]. IEEE Transactions on Communications, 2003, 51(11): 1939–1948. doi: 10.1109/TCOMM.2003.819238 KUMAR N, SINGYA P K, and BHATIA V. Performance analysis of orthogonal frequency division multiplexing-based cooperative amplify-and-forward networks with non-linear power amplifier over independently but not necessarily identically distributed Nakagami-m fading channels[J]. IET Communications, 2017, 11(7): 1008–1020. doi: 10.1049/iet-com.2016.0797 NADERI S, JAVAN M R, and AREF A. Secrecy outage analysis of cooperative amplify and forward relaying in device to device communications[C]. 24th Iranian Conference on Electrical Engineering, Shiraz, Iran, 2016: 40–44. BOUTEGGUI M and MERAZKA F. Performance of source transmit antenna selection for MIMO cooperative communication system based DF protocol: Symbol error rate and diversity order[C]. International Conference on Wireless Networks and Mobile Communications (WINCOM), Rabat, Morocco, 2017: 1–8. SHARMA S, ROY S D, and KUNDU S. Two way secure communication with two half-duplex DF relay[C]. TENCON 2017: IEEE Region 10 Conference, Penang, Malaysia, 2017: 869–874. ATAPATTU S, HE Yuanyuan, DHARMAWANSA P, et al. Impact of residual self-interference and direct-link interference on full-duplex relays[C]. 2017 IEEE International Conference on Industrial and Information Systems (ICIIS), Peradeniya, SriLanka, 2017: 1–6. WATKINS G T, THOMPSON W, and HALLS D. Single antenna full duplex cancellation network for ISM band[C]. 2018 IEEE Radio and Wireless Symposium (RWS), Anaheim, USA, 2018: 21–24. DUARTE M and SABHARWAL A. Full-duplex wireless communications using off-the-shelf radios: Feasibility and first results[C]. the Forty Fourth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2010: 1558–1562. DUARTE M, DICK C, and SABHARWAL A. Experiment-driven characterization of full-duplex wireless systems[J]. IEEE Transactions on Wireless Communications, 2012, 11(12): 4296–4307. doi: 10.1109/TWC.2012.102612.111278 RIIHONEN T, WERNER S, and WICHMAN R. Mitigation of loopback self-interference in full-duplex MIMO relays[J]. IEEE Transactions on Signal Process, 2011, 59(12): 5983–5993. doi: 10.1109/TSP.2011.2164910 RIIHONEN T, WERNER S, and WICHMAN R. Optimized gain control for single-frequency relaying with loop interference[J]. IEEE Transactions on Wireless Communications, 2009, 8(6): 2801–2806. doi: 10.1109/TWC.2009.080542 LIU Yi, DAI Yue, and XIA Xianggen. SC-FDE based full-duplex relay communication robust to residual loop interference[J]. IEEE Wireless Communications Letters, 2017, 6(4): 538–541. doi: 10.1109/LWC.2017.2713381 JIN Yuansheng, XIA Xianggen, and CHEN Yan. Full-duplex delay diversity relay transmission using bit-interleaved coded OFDM[J]. IEEE Transactions on Communications, 2017, 65(8): 3250–3258. doi: 10.1109/TCOMM.2017.2704109 LIU Yi, XIA Xianggen, and ZHANG Hailin. Distributed space-time coding for full-duplex asynchronous cooperative communications[J]. IEEE Transactions on Wireless Communications, 2012, 11(7): 2680–2688. doi: 10.1109/TWC.2012.060212.112214 LIU Yi, XIA Xianggen, and ZHANG Hailin. Distributed linear convolutional space-time coding for two-relay full-duplex asynchronous cooperative networks[J]. IEEE Transactions on Wireless Communications, 2013, 12(12): 6406–6417. doi: 10.1109/TWC.2013.102313.130541 -