基于稀疏貝葉斯學(xué)習(xí)的多跳頻信號(hào)DOA估計(jì)方法
doi: 10.11999/JEIT180435
-
1.
空軍工程大學(xué)信息與導(dǎo)航學(xué)院 ??西安 ??710077
-
2.
通信網(wǎng)信息傳輸與分發(fā)技術(shù)重點(diǎn)實(shí)驗(yàn)室 ??石家莊 ??050081
Direction of Arrival Estimation for Multiple Frequency Hopping Signals Based on Sparse Bayesian Learning
-
1.
Institute of Information and Navigation, Air Force Engineering University, Xi’an 710077, China
-
2.
Science and Technology on Information Transmission and Dissemination in Communication Networks Laboratory, Shijiazhuang 050081, China
-
摘要:
針對(duì)多跳頻信號(hào)空域參數(shù)估計(jì)問(wèn)題,該文在稀疏貝葉斯學(xué)習(xí)(SBL)的基礎(chǔ)上,利用跳頻信號(hào)的空域稀疏性實(shí)現(xiàn)了波達(dá)方向(DOA)的估計(jì)。首先構(gòu)造空域離散網(wǎng)格,將實(shí)際DOA與網(wǎng)格點(diǎn)之間的偏移量建模進(jìn)離散網(wǎng)格中,建立多跳頻信號(hào)均勻線(xiàn)陣接收數(shù)據(jù)模型;然后通過(guò)SBL理論得到行稀疏信號(hào)矩陣的后驗(yàn)概率分布,用超參數(shù)控制偏移量和信號(hào)矩陣的行稀疏程度;最后利用期望最大化(EM)算法對(duì)超參數(shù)進(jìn)行迭代,得到信號(hào)矩陣的最大后驗(yàn)估計(jì)以完成DOA的估計(jì)。理論分析與仿真實(shí)驗(yàn)表明該方法具有良好的估計(jì)性能并能適應(yīng)較少快拍數(shù)的情況。
-
關(guān)鍵詞:
- 信號(hào)處理 /
- 跳頻 /
- 波達(dá)方向 /
- 稀疏貝葉斯學(xué)習(xí)
Abstract:To solve the problem of spatial parameter estimation of multi-frequency hopping signals, the sparsity in spatial domain of frequency hopping signals is used to realize the Direction Of Arrival (DOA) estimation based on Sparse Bayesian Learning (SBL). First, the spatial discrete grid is constructed and the offset between the actual DOA and the grid points is modeled into it. The data model of the uniform linear array with multiple frequency hopping signals is established. Then the posterior probability distribution of the sparse signal matrix is obtained by the SBL theory, and the line sparsity of the signal matrix and the offset is controlled by the hyperparameters. Finally, The expectation maximization algorithm is used to iterate the hyper parameters, and the maximum posteriori estimation of the signal matrix is obtained to complete the DOA estimation. Theoretical analysis and simulation experiments show that this method has good estimation performance and can adapt to less snapshots.
-
表 1 不同快拍數(shù)下算法運(yùn)行時(shí)間的比較(s)
快拍數(shù) 20 80 本文算法所用時(shí)間 0.3804 0.5915 稀疏重構(gòu)算法所用時(shí)間 0.4066 0.3935 OGSBI算法所用時(shí)間 0.6454 0.8428 下載: 導(dǎo)出CSV
-
ZHAO Lifan, WANG Lu, BI Guoan, et al. Robust frequency-hopping spectrum estimation based on sparse Bayesian method[J]. IEEE Transactions on Wireless Communications, 2015, 14(2): 781–793. doi: 10.1109/TWC.2014.2360191 HU Chenlin, JIN Y K, NA S Y, et al. Compressive frequency hopping signal detection using spectral kurtosis and residual signals[J]. Wireless Personal Communications An International Journal, 2017, 94(1): 53–67. doi: 10.1007/s11277-015-3156-x 金艷, 李曙光, 姬紅兵. 基于柯西分布的跳頻信號(hào)參數(shù)最大似然估計(jì)方法[J]. 電子與信息學(xué)報(bào), 2016, 38(7): 1696–1702. doi: 10.11999/JEIT151029JIN Yan, LI Shuguang, and JI Hongbing. Maximum-likelihood estimation for frequency-hopping parameters by Cauchy distribution[J]. Journal of Electronics &Information Technology, 2016, 38(7): 1696–1702. doi: 10.11999/JEIT151029 陳利虎, 張爾揚(yáng). 基于數(shù)字信道化和空時(shí)頻分析的多網(wǎng)臺(tái)跳頻信號(hào)DOA估計(jì)[J]. 通信學(xué)報(bào), 2009, 30(10): 68–74.CHEN Lihu and ZHANG Eryang. Directions of arrival estimation for multi frequency-hopping signals based on digital channelized receiver and spatial time-frequency analysis[J]. Journal on Communications, 2009, 30(10): 68–74. 陳利虎. 基于空時(shí)頻分析的多分量跳頻信號(hào)DOA估計(jì)[J]. 系統(tǒng)工程與電子技術(shù), 2011, 33(12): 2587–2592. doi: 10.3969/j.issn.1001-506X.2011.12.04CHEN Lihu. Directions of arrival estimation for multicomponent frequency-hopping signals based on spatial time-frequency analysis[J]. Systems Engineering and Electronics, 2011, 33(12): 2587–2592. doi: 10.3969/j.issn.1001-506X.2011.12.04 ZHANG Chunlei and LI Lichun. Parameter estimation of multi frequency hopping signals based on compressive spatial time-frequency joint analysis[J]. Pacific Journal of Mathematics, 2014, 136(1): 85–101. doi: 10.1109/ICSESS.2014.6933627 STOICA P and NEHORAI A. MUSIC, maximum likelihood, and Cramer-Rao bound[J]. IEEE Transaction on Signal Processing, 1990, 37(5): 720–741. doi: 10.1109/29.17564 張東偉, 郭英, 張坤峰, 等. 多跳頻信號(hào)頻率跟蹤與二維波達(dá)方向?qū)崟r(shí)估計(jì)算法[J]. 電子與信息學(xué)報(bào), 2016, 38(9): 2377–2384. doi: 10.11999/JEIT151170ZHANG Dongwei, GUO Ying, ZHANG Kunfeng, et al. Online estimation algorithm of 2D-DOA and frequency tracking for multiple frequency-hopping signals[J]. Journal of Electronics &Information Technology, 2016, 38(9): 2377–2384. doi: 10.11999/JEIT151170 于欣永, 郭英, 張坤峰, 等. 一種高效的多跳頻信號(hào)2D-DOA估計(jì)算法[J]. 系統(tǒng)工程與電子技術(shù), 2018, 40(6): 1363–1370. doi: 10.3969/j.issn.1001-506X.2018.06.25YU Xinyong, GUO Ying, ZHANG Kunfeng, et al. An efficient 2D-DOA estimation algorithm for multi-FH signals[J]. Systems Engineering and Electronics, 2018, 40(6): 1363–1370. doi: 10.3969/j.issn.1001-506X.2018.06.25 LIU Fulai, PENG Lu, WEI Ming, et al. An improved L1-SVD algorithm based on noise subspace for DOA estimation[J]. Progress in Electromagnetics Research, 2012, 29(12): 109–122. doi: 10.2528/PIERC12021203 張坤峰, 郭英, 齊子森, 等. 基于稀疏貝葉斯重構(gòu)的多跳頻信號(hào)參數(shù)估計(jì)[J]. 華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版), 2017, 45(1): 97–102. doi: 10.13245/j.hust.170118ZHANG Kunfeng, GUO Ying, QI Zisen, et al. Parameter estimation for multiple frequency-hopping signals based on sparse Bayesian reconstruction[J]. Journal of Huazhong University of Science and Technology, 2017, 45(1): 97–102. doi: 10.13245/j.hust.170118 TIPPING M E. Sparse bayesian learning and the relevance vector machine[J]. Journal of Machine Learning Research, 2001, 1(3): 211–244. WIPF D P and RAO B D. An empirical Bayesian strategy for solving the simultaneous sparse approximation problem[J]. IEEE Transactions on Signal Processing, 2007, 55(7): 3704–3716. doi: 10.1109/TSP.2007.894265 LEI Wenying and CHEN Baixiao. High-resolution DOA estimation for closely spaced correlated signals using unitary sparse Bayesian learning[J]. Electronics Letters, 2015, 51(3): 285–287. doi: 10.1049/el.2014.1317 HUANG Qinghua, ZHANG Guangfei, and FANG Yong. Real-valued DOA estimation for spherical arrays using sparse Bayesian learning[J]. Signal Processing, 2016, 125(C): 79–86. doi: 10.1016/j.sigpro.2016.01.009 YANG Jie, YANG Yixin, LIAO Guisheng, et al. A super-resolution direction of arrival estimation algorithm for coprime array via sparse Bayesian learning inference[J]. Circuits Systems & Signal Processing, 2018, 37(5): 1907–1934. doi: 10.1007/s00034-017-0637-z YANG Zai, XIE Lihua, and ZHANG Cishen. Off-grid direction of arrival estimation using sparse Bayesian inference[J]. IEEE Transactions on Signal Processing, 2013, 61(1): 38–43. doi: 10.1109/TSP.2012.2222378 東潤(rùn)澤, 郭英, 于欣永, 等. Off-grid direction of arrival estimation using sparse Bayesian inference[J]. 空軍工程大學(xué)學(xué)報(bào)(自然科學(xué)版), 2018, 19(3): 56–61.DONG Runze, GUO Ying, YU Xinyong, et al. A frequency hopping signal detection method based on sparse reconstruction[J]. Journal of Air Force Engineering University(Natural Science Edition) , 2018, 19(3): 56–61. COTTER S F, RAO B D, ENGAN K, et al. Sparse solutions to linear inverse problems with multiple measurement vectors[J]. IEEE Transactions on Signal Processing, 2005, 53(7): 2477–2488. doi: 10.1109/TSP.2005.849172 ELDAR Y C and MISHALI M. Robust recovery of signals from a structured union of subspaces[J]. IEEE Transactions on Information Theory, 2009, 55(11): 5302–5316. doi: 10.1109/TIT.2009.2030471 -