一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言?xún)?nèi)容
驗(yàn)證碼

基于稀疏貝葉斯學(xué)習(xí)的多跳頻信號(hào)DOA估計(jì)方法

郭英 東潤(rùn)澤 張坤峰 眭萍 楊銀松

郭英, 東潤(rùn)澤, 張坤峰, 眭萍, 楊銀松. 基于稀疏貝葉斯學(xué)習(xí)的多跳頻信號(hào)DOA估計(jì)方法[J]. 電子與信息學(xué)報(bào), 2019, 41(3): 516-522. doi: 10.11999/JEIT180435
引用本文: 郭英, 東潤(rùn)澤, 張坤峰, 眭萍, 楊銀松. 基于稀疏貝葉斯學(xué)習(xí)的多跳頻信號(hào)DOA估計(jì)方法[J]. 電子與信息學(xué)報(bào), 2019, 41(3): 516-522. doi: 10.11999/JEIT180435
Ying GUO, Runze DONG, Kunfeng ZHANG, Ping SUI, Yinsong YANG. Direction of Arrival Estimation for Multiple Frequency Hopping Signals Based on Sparse Bayesian Learning[J]. Journal of Electronics & Information Technology, 2019, 41(3): 516-522. doi: 10.11999/JEIT180435
Citation: Ying GUO, Runze DONG, Kunfeng ZHANG, Ping SUI, Yinsong YANG. Direction of Arrival Estimation for Multiple Frequency Hopping Signals Based on Sparse Bayesian Learning[J]. Journal of Electronics & Information Technology, 2019, 41(3): 516-522. doi: 10.11999/JEIT180435

基于稀疏貝葉斯學(xué)習(xí)的多跳頻信號(hào)DOA估計(jì)方法

doi: 10.11999/JEIT180435
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(61601500)
詳細(xì)信息
    作者簡(jiǎn)介:

    郭英:女,1961年生,博士,教授,博士生導(dǎo)師,研究方向?yàn)橥ㄐ判盘?hào)處理、自適應(yīng)信號(hào)處理等

    東潤(rùn)澤:男,1995年生,碩士生,研究方向?yàn)樘l信號(hào)檢測(cè)、參數(shù)估計(jì)

    張坤峰:男,1989年生,博士生,研究方向?yàn)橥ㄐ判盘?hào)偵查處理、陣列信號(hào)處理

    眭萍:女,1991年生,博士生,研究方向?yàn)樾盘?hào)指紋特征識(shí)別

    楊銀松:男,1994年生,碩士生,研究方向?yàn)橥ㄐ判盘?hào)處理、跳頻信號(hào)網(wǎng)臺(tái)分選

    通訊作者:

    郭英 yguo@163.com

  • 中圖分類(lèi)號(hào): TN911.7

Direction of Arrival Estimation for Multiple Frequency Hopping Signals Based on Sparse Bayesian Learning

Funds: The National Natural Science Foundation of China (61601500)
  • 摘要:

    針對(duì)多跳頻信號(hào)空域參數(shù)估計(jì)問(wèn)題,該文在稀疏貝葉斯學(xué)習(xí)(SBL)的基礎(chǔ)上,利用跳頻信號(hào)的空域稀疏性實(shí)現(xiàn)了波達(dá)方向(DOA)的估計(jì)。首先構(gòu)造空域離散網(wǎng)格,將實(shí)際DOA與網(wǎng)格點(diǎn)之間的偏移量建模進(jìn)離散網(wǎng)格中,建立多跳頻信號(hào)均勻線(xiàn)陣接收數(shù)據(jù)模型;然后通過(guò)SBL理論得到行稀疏信號(hào)矩陣的后驗(yàn)概率分布,用超參數(shù)控制偏移量和信號(hào)矩陣的行稀疏程度;最后利用期望最大化(EM)算法對(duì)超參數(shù)進(jìn)行迭代,得到信號(hào)矩陣的最大后驗(yàn)估計(jì)以完成DOA的估計(jì)。理論分析與仿真實(shí)驗(yàn)表明該方法具有良好的估計(jì)性能并能適應(yīng)較少快拍數(shù)的情況。

  • 圖  1  均勻線(xiàn)陣接收模型

    圖  2  不同陣元數(shù)下算法性能與運(yùn)行時(shí)間的比較

    圖  3  不同網(wǎng)格間隔下算法性能與運(yùn)行時(shí)間的比較

    圖  4  各算法的空間譜比較

    圖  5  不同快拍數(shù)下算法性能的比較

    表  1  不同快拍數(shù)下算法運(yùn)行時(shí)間的比較(s)

    快拍數(shù)2080
    本文算法所用時(shí)間0.38040.5915
    稀疏重構(gòu)算法所用時(shí)間0.40660.3935
    OGSBI算法所用時(shí)間0.64540.8428
    下載: 導(dǎo)出CSV
  • ZHAO Lifan, WANG Lu, BI Guoan, et al. Robust frequency-hopping spectrum estimation based on sparse Bayesian method[J]. IEEE Transactions on Wireless Communications, 2015, 14(2): 781–793. doi: 10.1109/TWC.2014.2360191
    HU Chenlin, JIN Y K, NA S Y, et al. Compressive frequency hopping signal detection using spectral kurtosis and residual signals[J]. Wireless Personal Communications An International Journal, 2017, 94(1): 53–67. doi: 10.1007/s11277-015-3156-x
    金艷, 李曙光, 姬紅兵. 基于柯西分布的跳頻信號(hào)參數(shù)最大似然估計(jì)方法[J]. 電子與信息學(xué)報(bào), 2016, 38(7): 1696–1702. doi: 10.11999/JEIT151029

    JIN Yan, LI Shuguang, and JI Hongbing. Maximum-likelihood estimation for frequency-hopping parameters by Cauchy distribution[J]. Journal of Electronics &Information Technology, 2016, 38(7): 1696–1702. doi: 10.11999/JEIT151029
    陳利虎, 張爾揚(yáng). 基于數(shù)字信道化和空時(shí)頻分析的多網(wǎng)臺(tái)跳頻信號(hào)DOA估計(jì)[J]. 通信學(xué)報(bào), 2009, 30(10): 68–74.

    CHEN Lihu and ZHANG Eryang. Directions of arrival estimation for multi frequency-hopping signals based on digital channelized receiver and spatial time-frequency analysis[J]. Journal on Communications, 2009, 30(10): 68–74.
    陳利虎. 基于空時(shí)頻分析的多分量跳頻信號(hào)DOA估計(jì)[J]. 系統(tǒng)工程與電子技術(shù), 2011, 33(12): 2587–2592. doi: 10.3969/j.issn.1001-506X.2011.12.04

    CHEN Lihu. Directions of arrival estimation for multicomponent frequency-hopping signals based on spatial time-frequency analysis[J]. Systems Engineering and Electronics, 2011, 33(12): 2587–2592. doi: 10.3969/j.issn.1001-506X.2011.12.04
    ZHANG Chunlei and LI Lichun. Parameter estimation of multi frequency hopping signals based on compressive spatial time-frequency joint analysis[J]. Pacific Journal of Mathematics, 2014, 136(1): 85–101. doi: 10.1109/ICSESS.2014.6933627
    STOICA P and NEHORAI A. MUSIC, maximum likelihood, and Cramer-Rao bound[J]. IEEE Transaction on Signal Processing, 1990, 37(5): 720–741. doi: 10.1109/29.17564
    張東偉, 郭英, 張坤峰, 等. 多跳頻信號(hào)頻率跟蹤與二維波達(dá)方向?qū)崟r(shí)估計(jì)算法[J]. 電子與信息學(xué)報(bào), 2016, 38(9): 2377–2384. doi: 10.11999/JEIT151170

    ZHANG Dongwei, GUO Ying, ZHANG Kunfeng, et al. Online estimation algorithm of 2D-DOA and frequency tracking for multiple frequency-hopping signals[J]. Journal of Electronics &Information Technology, 2016, 38(9): 2377–2384. doi: 10.11999/JEIT151170
    于欣永, 郭英, 張坤峰, 等. 一種高效的多跳頻信號(hào)2D-DOA估計(jì)算法[J]. 系統(tǒng)工程與電子技術(shù), 2018, 40(6): 1363–1370. doi: 10.3969/j.issn.1001-506X.2018.06.25

    YU Xinyong, GUO Ying, ZHANG Kunfeng, et al. An efficient 2D-DOA estimation algorithm for multi-FH signals[J]. Systems Engineering and Electronics, 2018, 40(6): 1363–1370. doi: 10.3969/j.issn.1001-506X.2018.06.25
    LIU Fulai, PENG Lu, WEI Ming, et al. An improved L1-SVD algorithm based on noise subspace for DOA estimation[J]. Progress in Electromagnetics Research, 2012, 29(12): 109–122. doi: 10.2528/PIERC12021203
    張坤峰, 郭英, 齊子森, 等. 基于稀疏貝葉斯重構(gòu)的多跳頻信號(hào)參數(shù)估計(jì)[J]. 華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版), 2017, 45(1): 97–102. doi: 10.13245/j.hust.170118

    ZHANG Kunfeng, GUO Ying, QI Zisen, et al. Parameter estimation for multiple frequency-hopping signals based on sparse Bayesian reconstruction[J]. Journal of Huazhong University of Science and Technology, 2017, 45(1): 97–102. doi: 10.13245/j.hust.170118
    TIPPING M E. Sparse bayesian learning and the relevance vector machine[J]. Journal of Machine Learning Research, 2001, 1(3): 211–244.
    WIPF D P and RAO B D. An empirical Bayesian strategy for solving the simultaneous sparse approximation problem[J]. IEEE Transactions on Signal Processing, 2007, 55(7): 3704–3716. doi: 10.1109/TSP.2007.894265
    LEI Wenying and CHEN Baixiao. High-resolution DOA estimation for closely spaced correlated signals using unitary sparse Bayesian learning[J]. Electronics Letters, 2015, 51(3): 285–287. doi: 10.1049/el.2014.1317
    HUANG Qinghua, ZHANG Guangfei, and FANG Yong. Real-valued DOA estimation for spherical arrays using sparse Bayesian learning[J]. Signal Processing, 2016, 125(C): 79–86. doi: 10.1016/j.sigpro.2016.01.009
    YANG Jie, YANG Yixin, LIAO Guisheng, et al. A super-resolution direction of arrival estimation algorithm for coprime array via sparse Bayesian learning inference[J]. Circuits Systems & Signal Processing, 2018, 37(5): 1907–1934. doi: 10.1007/s00034-017-0637-z
    YANG Zai, XIE Lihua, and ZHANG Cishen. Off-grid direction of arrival estimation using sparse Bayesian inference[J]. IEEE Transactions on Signal Processing, 2013, 61(1): 38–43. doi: 10.1109/TSP.2012.2222378
    東潤(rùn)澤, 郭英, 于欣永, 等. Off-grid direction of arrival estimation using sparse Bayesian inference[J]. 空軍工程大學(xué)學(xué)報(bào)(自然科學(xué)版), 2018, 19(3): 56–61.

    DONG Runze, GUO Ying, YU Xinyong, et al. A frequency hopping signal detection method based on sparse reconstruction[J]. Journal of Air Force Engineering University(Natural Science Edition), 2018, 19(3): 56–61.
    COTTER S F, RAO B D, ENGAN K, et al. Sparse solutions to linear inverse problems with multiple measurement vectors[J]. IEEE Transactions on Signal Processing, 2005, 53(7): 2477–2488. doi: 10.1109/TSP.2005.849172
    ELDAR Y C and MISHALI M. Robust recovery of signals from a structured union of subspaces[J]. IEEE Transactions on Information Theory, 2009, 55(11): 5302–5316. doi: 10.1109/TIT.2009.2030471
  • 加載中
圖(5) / 表(1)
計(jì)量
  • 文章訪(fǎng)問(wèn)數(shù):  2228
  • HTML全文瀏覽量:  778
  • PDF下載量:  108
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2018-05-08
  • 修回日期:  2018-09-20
  • 網(wǎng)絡(luò)出版日期:  2018-10-23
  • 刊出日期:  2019-03-01

目錄

    /

    返回文章
    返回