一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標(biāo)題
留言內(nèi)容
驗證碼

基于灰度變換與兩尺度分解的夜視圖像融合

朱浩然 劉云清 張文穎

朱浩然, 劉云清, 張文穎. 基于灰度變換與兩尺度分解的夜視圖像融合[J]. 電子與信息學(xué)報, 2019, 41(3): 640-648. doi: 10.11999/JEIT180407
引用本文: 朱浩然, 劉云清, 張文穎. 基于灰度變換與兩尺度分解的夜視圖像融合[J]. 電子與信息學(xué)報, 2019, 41(3): 640-648. doi: 10.11999/JEIT180407
Haoran ZHU, Yunqing LIU, Wenying ZHANG. Night-vision Image Fusion Based on Intensity Transformation and Two-scale Decomposition[J]. Journal of Electronics & Information Technology, 2019, 41(3): 640-648. doi: 10.11999/JEIT180407
Citation: Haoran ZHU, Yunqing LIU, Wenying ZHANG. Night-vision Image Fusion Based on Intensity Transformation and Two-scale Decomposition[J]. Journal of Electronics & Information Technology, 2019, 41(3): 640-648. doi: 10.11999/JEIT180407

基于灰度變換與兩尺度分解的夜視圖像融合

doi: 10.11999/JEIT180407
詳細信息
    作者簡介:

    朱浩然:男,1987年生,博士生,研究方向為圖像融合、圖像增強等

    劉云清:男,1970年生,教授,博士生導(dǎo)師,主要研究方向為自動控制與測試技術(shù)等

    張文穎:女,1988年生,博士生,研究方向為光電測量與精密儀器等

    通訊作者:

    劉云清 mzliuyunqing@163.com

  • 中圖分類號: TP391

Night-vision Image Fusion Based on Intensity Transformation and Two-scale Decomposition

  • 摘要:

    為了獲得更適合人感知的夜視融合圖像,該文提出一種基于灰度變換與兩尺度分解的夜視圖像融合算法。首先,利用紅外像素值作為指數(shù)因子對可見光圖像進行灰度轉(zhuǎn)換,在達到可見光圖像增強的同時還使可見光與紅外圖像融合任務(wù)轉(zhuǎn)換為同類圖像融合。其次,通過均值濾波對增強結(jié)果與原始可見光圖像進行兩尺度分解。再次,運用基于視覺權(quán)重圖的方法融合細節(jié)層。最后,綜合這些結(jié)果重構(gòu)出融合圖像。由于該文方法在可見光波段顯示結(jié)果,因此融合圖像更適合視覺感知。實驗結(jié)果表明,所提方法在視覺質(zhì)量和客觀評價方面優(yōu)于其它5種對比方法,融合時間小于0.2 s,滿足實時性要求。融合后圖像背景細節(jié)信息清晰,熱目標(biāo)突出,同時降低處理時間。

  • 圖  1  HE與本文方法結(jié)果比較

    圖  2  提出的圖像融合方法的框架

    圖  3  視覺顯著性檢測的原理圖

    圖  4  權(quán)重圖

    圖  5  不同方法對源圖像“Quad”的融合結(jié)果比較

    圖  6  不同方法對源圖像“UNcamp”的融合結(jié)果比較

    圖  7  不同方法對源圖像“Kaptein”的融合結(jié)果比較

    圖  8  不同方法對源圖像“Steamboat”的融合結(jié)果比較

    圖  9  不同方法的客觀性能指標(biāo)平均值比較

    表  1  不同融合方法的客觀性能指標(biāo)

    圖像評價指標(biāo)LAPROLPCVTDTCWTADF本文方法
    $\mathop \mu \limits^ \wedge $52.506755.502551.900551.898351.775670.1690
    Quad$\sigma $31.561628.262425.180425.268221.989434.3756
    ${E_f}$6.47296.10936.16926.15866.03986.7689
    $\mathop \mu \limits^ \wedge $90.814996.305291.086891.078891.1387124.2739
    UNcamp$\sigma $29.129227.730126.939126.276023.226538.3262
    ${E_f}$6.65506.55086.53106.48476.28657.2638
    $\mathop \mu \limits^ \wedge $82.178886.197982.101082.076682.0353122.6444
    Kaptein$\sigma $36.264935.791834.158233.615231.690251.6181
    ${E_f}$6.77636.79116.77796.70546.60477.4176
    $\mathop \mu \limits^ \wedge $110.9204113.3709110.9161110.9148110.9183163.6281
    Steamboat$\sigma $14.074313.831912.470012.316011.078626.4028
    ${E_f}$5.30715.35955.20875.13775.00495.9645
    下載: 導(dǎo)出CSV

    表  2  處理時間對比(s)

    圖像大小LAPROLPCVTDTCWTADF本文方法
    Quad496×6320.01930.19311.99940.52880.92670.1681
    UNcamp270×3600.00940.10761.22810.24800.32250.1021
    Kaptein450×6200.02030.19191.83080.48910.85700.1341
    Steamboat510×5050.01270.17711.70490.44340.84720.1192
    平均0.02470.16741.69080.42730.73840.1309
    下載: 導(dǎo)出CSV
  • 馮鑫, 張建華, 胡開群, 等. 基于變分多尺度的紅外與可見光圖像融合[J]. 電子學(xué)報, 2018, 46(3): 680–687. doi: 10.3969/j.issn.0372-2112.2018.03.025

    FENG Xin, ZHANG Jianhua, HU Kaiqun, et al. The infrared and visible image fusion method based on variational multiscale[J]. Acta Electronica Sinica, 2018, 46(3): 680–687. doi: 10.3969/j.issn.0372-2112.2018.03.025
    江澤濤, 吳輝, 周嘵玲. 基于改進引導(dǎo)濾波和雙通道脈沖發(fā)放皮層模型的紅外與可見光圖像融合算法[J]. 光學(xué)學(xué)報, 2018, 38(2): 112–120. doi: 10.3788/aos201838.0210002

    JIANG Zetao, WU Hui, and ZHOU Xiaoling. Infrared and visible image fusion algorithm based on improved guided filtering and dual-channel spiking cortical model[J]. Acta Optica Sinica, 2018, 38(2): 112–120. doi: 10.3788/aos201838.0210002
    LI Jinxi, ZHOU Dingfu, YUAN Sheng, et al. Modified image fusion technique to remove defocus noise in optical scanning holography[J]. Optics Communications, 2018, 407(15): 234–238. doi: 10.1016/j.optcom.2017.08.057
    YIN Xiang and MA Jun. Image fusion method based on entropy rate segmentation and multi-scale decomposition[J]. Laser & Optoelectronics Progress, 2018, 55(1): 1–8. doi: 10.3788/LOP55.011011
    LI Shutao, KANG Xudong, and HU Jianwen. Image fusion with guided filtering[J]. IEEE Transactions on Image Processing: A Publication of the IEEE Signal Processing Society, 2013, 22(7): 2864–2875. doi: 10.1109/TIP.2013.2244222
    LEWIS J J, O'CALLAGHAN R J, NIKOLOV S G, et al. Pixel- and region-based image fusion with complex wavelets[J]. Information Fusion, 2007, 8(2): 119–130. doi: 10.1016/j.inffus.2005.09.006
    KUMAR B K S. Image fusion based on pixel significance using cross bilateral filter[J]. Signal, Image and Video Processing, 2015, 9(5): 1193–1204. doi: 10.1007/s11760-013-0556-9
    謝偉, 周玉欽, 游敏. 融合梯度信息的改進引導(dǎo)濾波[J]. 中國圖象圖形學(xué)報, 2016, 21(9): 1119–1126. doi: 10.11834/jig.20160901

    XIE Wei, ZHOU Yuqin, and YOU Min. Improved guided image filtering integrated with gradient information[J]. Journal of Image and Graphics, 2016, 21(9): 1119–1126. doi: 10.11834/jig.20160901
    ZUO Yujia, LIU Jinghong, BAI Guanbing, et al. Airborne infrared and visible image fusion combined with region segmentation[J]. Sensors, 2017, 17(5): 1–15. doi: 10.3390/s17051127
    TAO Li, NGO Hau, ZHANG Ming, et al. A multisensory image fusion and enhancement system for assisting drivers in poor lighting conditions[C]. Proceedings of the 34th Applied Imagery and Pattern Recognition Workshop, Washington, USA, 2005: 106–113.
    CHANDRASHEKAR L and SREEDEVI A. Advances in biomedical imaging and image fusion[J]. International Journal of Computer Applications, 2018, 179(24): 1–9. doi: 10.5120/ijca2018912307
    LIU Yu, CHEN Xun, PENG Hu, et al. Multi-focus image fusion with a deep convolutional neural network[J]. Information Fusion, 2017, 36(7): 191–207. doi: 10.1016/j.inffus.2016.12.001
    劉峰, 沈同圣, 馬新星. 交叉雙邊濾波和視覺權(quán)重信息的圖像融合[J]. 儀器儀表學(xué)報, 2017, 38(4): 1005–1013. doi: 10.3969/j.issn.0254-3087.2017.04.027

    LIU Feng, SHEN Tongsheng, and MA Xinxing. Image fusion via cross bilateral filter and visual weight information[J]. Chinese Journal of Scientific Instrument, 2017, 38(4): 1005–1013. doi: 10.3969/j.issn.0254-3087.2017.04.027
    ZHAO Jufeng, FENG Huajun, XU Zhihai, et al. Detail enhanced multi-source fusion using visual weight map extraction based on multi scale edge preserving decomposition[J]. Optics Communications, 2013, 287(2): 45–52. doi: 10.1016/j.optcom.2012.08.070
    LIU Zhaodong, CHAI Yi, YIN Hongpeng, et al. A novel multi-focus image fusion approach based on image decomposition[J]. Information Fusion, 2017, 35(5): 102–116. doi: 10.1016/j.inffus.2016.09.007
    孫彥景, 楊玉芬, 劉東林, 等. 基于內(nèi)在生成機制的多尺度結(jié)構(gòu)相似性圖像質(zhì)量評價[J]. 電子與信息學(xué)報, 2016, 38(1): 127–134. doi: 10.11999/JEIT150616

    SUN Yanjing, YANG Yufen, LIU Donglin, et al. Multiple-scale structural similarity image quality assessment based on internal generative mechanism[J]. Journal of Electronics &Information Technology, 2016, 38(1): 127–134. doi: 10.11999/JEIT150616
    LI Jun, SONG Minghui, and PENG Yuanxi. Infrared and visible image fusion based on robust principal component analysis and compressed sensing[J]. Infrared Physics & Technology, 2018, 89(3): 129–139. doi: 10.1016/j.infrared.2018.01.003
    劉國軍, 高麗霞, 陳麗奇. 廣義平均的全參考型圖像質(zhì)量評價池化策略[J]. 光學(xué)精密工程, 2017, 25(3): 742–748. doi: 10.3788/OPE.20172503.0742

    LIU Guojun, GAO Lixia, and CHEN Liqi. Pool strategy for full-reference IQA via general means[J]. Optics and Precision Engineering, 2017, 25(3): 742–748. doi: 10.3788/OPE.20172503.0742
    曲懷敬, 李健. 基于混合統(tǒng)計建模的圖像融合[J]. 計算機輔助設(shè)計與圖形學(xué)學(xué)報, 2017, 29(5): 838–845. doi: 10.3969/j.issn.1003-9775.2017.05.007

    QU Huaijing and LI Jian. Image fusion based on statistical mixture modeling[J]. Journal of Computer-Aided Design &Computer Graphics, 2017, 29(5): 838–845. doi: 10.3969/j.issn.1003-9775.2017.05.007
    朱攀, 劉澤陽, 黃戰(zhàn)華. 基于DTCWT和稀疏表示的紅外偏振與光強圖像融合[J]. 光子學(xué)報, 2017, 46(12): 213–221. doi: 10.3788/gzxb20174612.1210002

    ZHU Pan, LIU Zeyang, and HUANG Zhanhua. Infrared polarization and intensity image fusion based on dual-tree complex wavelet transform and sparse representation[J]. Acta Photonica Sinica, 2017, 46(12): 213–221. doi: 10.3788/gzxb20174612.1210002
  • 加載中
圖(9) / 表(2)
計量
  • 文章訪問數(shù):  2409
  • HTML全文瀏覽量:  986
  • PDF下載量:  95
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2017-05-02
  • 修回日期:  2018-10-18
  • 網(wǎng)絡(luò)出版日期:  2018-10-31
  • 刊出日期:  2019-03-01

目錄

    /

    返回文章
    返回