基于自相關(guān)-倒譜聯(lián)合分析的無人機(jī)旋翼轉(zhuǎn)動(dòng)頻率估計(jì)方法
doi: 10.11999/JEIT180399
-
1.
微波成像技術(shù)重點(diǎn)實(shí)驗(yàn)室 ??北京 ??100190
-
2.
中國科學(xué)院電子學(xué)研究所 ??北京 ??100190
-
3.
中國科學(xué)院大學(xué) ??北京 ??100049
An Estimation Method of Rotation Frequency of Unmanned Aerial Vehicle Based on Auto-correlation and Cepstrum
-
1.
National Key Laboratory of Microwave Imaging Technology, Beijing 100190, China
-
2.
Institute of electronics, Chinese Academy of Sciences, Beijing 100190, China
-
3.
University of Chinese Academy of Sciences, Beijing 100049, China
-
摘要:
準(zhǔn)確估計(jì)無人機(jī)旋翼轉(zhuǎn)動(dòng)頻率對(duì)于無人機(jī)的檢測(cè)與識(shí)別具有重要意義。該文針對(duì)調(diào)頻連續(xù)波雷達(dá)的無人機(jī)目標(biāo)回波模型,提出一種自相關(guān)-倒譜聯(lián)合分析的無人機(jī)旋翼轉(zhuǎn)動(dòng)頻率估計(jì)方法,推導(dǎo)了無人機(jī)旋翼轉(zhuǎn)動(dòng)頻率與雷達(dá)回波倒譜輸出中周期性時(shí)延的映射關(guān)系,通過加權(quán)均衡能夠更有效地估計(jì)多旋翼無人機(jī)旋翼轉(zhuǎn)動(dòng)頻率,彌補(bǔ)了傳統(tǒng)方法的不足。通過仿真和實(shí)際場(chǎng)景實(shí)驗(yàn)驗(yàn)證了方法的有效性。
-
關(guān)鍵詞:
- 無人機(jī) /
- 微多普勒 /
- 特征提取 /
- 參數(shù)估計(jì) /
- 自相關(guān)-倒譜
Abstract:Accurately estimating rotor rotation frequency of Unmanned Aerial Vehicle (UAV) is of great significance for UAV detection and recognition. For the UAV target echo model of LFMCW (Linear Frequency Modulated Continuous Wave) radar, this paper proposes an auto-correlation and cepstrum to estimate the rotor rotation frequency of UAV, which derives the mapping relationship between the rotor rotation frequency of UAV and the periodic delay in the radar echo cepstrum output, and more effectively estimates the rotor frequency of multi-rotor UAV by weighted equilibrium, making up for the shortages of traditional methods. The effectiveness of the method is verified by simulation and real scene experiments.
-
表 1 雷達(dá)系統(tǒng)參數(shù)
參數(shù) 數(shù)值 中心頻率f0 34.6 GHz 帶寬 1.2 GHz PRF 31.25 kHz 無人機(jī)與雷達(dá)距離 200 m 原始回波SNR 0 dB 觀測(cè)時(shí)間 1 s 下載: 導(dǎo)出CSV
-
HOFFMANN F, RITCHIE M, FIORANELLI, et al. Micro-Doppler based detection and tracking of UAVs with multistatic radar[C]. Radar Conference, Philadelphia, USA, 2016: 1–6. doi: 10.1109/RADAR.2016.7485236. CHEN Xinlin, XIAO Guangzong, XIONG Wei, et al. Rotation of an optically trapped vaterite microsphere measured using rotational Doppler effect[J]. Optical Engineering, 2018, 57(3): 036103. doi: 10.1117/1.OE.57.3.036103 ZHANG Wenyu and LI Gang. Detection of multiple micro-drones via cadence velocity diagram analysis[J]. Electronics Letters, 2018, 54(7): 441–443. doi: 10.1049/el.2017.4317 黃小紅, 賀夏, 辛玉林, 等. 基于時(shí)頻特征的低分辨雷達(dá)微動(dòng)多目標(biāo)分辨方法[J]. 電子與信息學(xué)報(bào), 2010, 32(10): 2342–2347. doi: 10.3724/SP.J.1146.2009.0314HUANG Xiaohong, HE Xia, XIN Yulin, et al. Resolving multiple targets with micro-motions based on time-frequency feature with low-resolution radar[J]. Jounal of Electronics &Information Technology, 2010, 32(10): 2342–2347. doi: 10.3724/SP.J.1146.2009.0314 CHEN V C, LI F, HO S S, et al. Micro-Doppler effect in radar: Phenomenon, model, and simulation study[J]. IEEE Transactions on Aerospace & Electronic Systems, 2006, 42(1): 2–21. doi: 10.1109/TAES.2006.1603402 ANDERSON M G and ROGERS R L. Micro-Doppler analysis of multiple frequency continuous wave radar signatures[C]. Defense and Security Symposium, Orlando, USA, 2007. 6547: 65470A-65470A-10. doi: 10.1117/12.719800. 王璐, 劉宏偉. 基于時(shí)頻圖的微動(dòng)目標(biāo)運(yùn)動(dòng)參數(shù)提取和特征識(shí)別的方法[J]. 電子與信息學(xué)報(bào), 2010, 32(8): 1812–1817. doi: 10.3724/SP.J.1146.2009.01127WANG Lu and LIU Hongwei. Method for micro-motion target recognition and motion parameter extraction based on time-frequency analysis[J]. Jounal of Electronics &Information Technology, 2010, 32(8): 1812–1817. doi: 10.3724/SP.J.1146.2009.01127 SPARR T and KRANE B. Micro-Doppler analysis of vibrating targets in SAR[J]. IEE Proceedings: Radar, Sonar and Navigation, 2003, 150(4): 277–283. doi: 10.1049/ip-rsn:20030697 SETLUR P, AMIN M, and THAYAPARAN T. Micro-doppler signal estimation for vibrating and rotating targets[C]. IEEE Eighth International Symposium on Signal Processing and ITS Applications, Sydney, Australia, 2005: 639–642. doi: 10.1109/ISSPA.2005.1581019. YANG Yang, PENG Zhike, DONG Xiaojin, et al. General parameterized time-frequency transform[J]. IEEE Transactions on Signal Processing, 2014, 62(11): 2751–2764. doi: 10.1109/TSP.2014.2314061 ANGRISANI L, D'ARCO M, MORIELLO R S L, et al. Warblet transform based method for instantaneous frequency measurement on multicomponent signals[C]. Proceedings of the 2004 IEEE International Frequency Control Symposium and Exposition. Montreal, Canada. 2004: 500–508. doi: 10.1109/FREQ.2004.1418509. VISHWAKARMA S and RAM S S. Detection of multiple movers based on single channel source separation of their micro-Dopplers[J]. IEEE Transactions on Aerospace & Electronic Systems, 2018, 54(1): 159–169. doi: 10.1109/TAES.2017.2739958 KANG Wenwu, ZHANG Yunhua, and DONG Xiao. Micro-Doppler effect removal for ISAR imaging based on bivariate variational mode decomposition[J]. IET Radar Sonar & Navigation, 2018, 12(1): 74–81. doi: 10.1049/iet-rsn.2017.0104 LIU Yixing, LI Xiang, and ZHUANG Zuwen. Estimation of micro-motion parameters based on micro-Doppler[J]. IET Signal Processing, 2010, 4(3): 213–217. doi: 10.1049/iet-spr.2009.0042 STANKOVIC L, DJUROVIC I, and THAYAPARAN T. Separation of target rigid body and micro-Doppler effects in ISAR imaging[J]. IEEE Transactions on Aerospace & Electronic Systems, 2006, 42(4): 1496–1506. doi: 10.1109/TAES.2006.314590 THAYAPARAN T, STANKOVI? L, and DJUROVI? I. Micro-Doppler-based target detection and feature extraction in indoor and outdoor environments[J]. Journal of the Franklin Institute, 2008, 345(6): 700–722. doi: 10.1016/j.jfranklin.2008.01.003 CAI Chengjie, LIU Weixian, FU Junshan, et al. Empirical mode decomposition of micro-Doppler signature[C]. IEEE International Radar Conference, Arlington, Virginia, USA, 2005: 895–899. doi: 10.1109/RADAR.2005.1435954. LAI Caiping, RUAN Quan, and NARAYANAN R M. Hilbert-Huang Transform (HHT) processing of through-wall noise radar data for human activity characterization[C]. IEEE Workshop on Signal Processing Applications for Public Security and Forensics, Washington, DC, USA, 2007: 1–6. THAYAPARAN T, ABROL S, and QIAN S. Micro-Doppler analysis of rotating target in SAR[R]. Defence Research and Development Canada Ottawa (ONTARIO), 2005. WALTER M, SHUTIN D, and DAMMANN A. Time-variant Doppler PDFs and characteristic functions for the vehicle-to-vehicle channel[J]. IEEE Transactions on Vehicular Technology, 2017, 66(12): 10748–10763. doi: 10.1109/TVT.2017.2722229 FUHRMANN L, BIALLAWONS O, KLARE J, et al. Micro-Doppler analysis and classification of UAVs at Ka band[C]. 2017 18th IEEE International Radar Symposium (IRS), Prague, Czech Republic, 2017: 1–9. doi: 10.23919/IRS.2017.8008142. LUCA P, PAOLO C, and FABRIZIO B. Radar micro-Doppler mini-UAV classification using spectrograms and cepstrograms[J]. International Journal of Microwave & Wireless Technologies, 2015, 7(3/4): 469–477. doi: 10.1017/S1759078715001002 蘆俊, 張顏嶺, 張鳳園. 一種被動(dòng)聲吶線譜背景均衡算法[J]. 聲學(xué)與電子工程, 2016(3): 20–22.LU Jun, ZHANG Yanling, and Zhang Fengyuan. A passive sonar line spectrum background equalization algorithm[J]. Acoustics and Electronic Engineering, 2016(3): 20–22. -