基于Mann-Whitney秩和檢驗(yàn)的無線局域網(wǎng)室內(nèi)映射與定位方法
doi: 10.11999/JEIT180392
-
重慶郵電大學(xué)通信與信息工程學(xué)院? ?重慶? ?400065
基金項(xiàng)目: 國家自然科學(xué)基金(61771083, 61704015),重慶市研究生科研創(chuàng)新項(xiàng)目(CYS17221, CYS18240),長江學(xué)者和創(chuàng)新團(tuán)隊(duì)發(fā)展計劃(IRT1299),重慶市科委重點(diǎn)實(shí)驗(yàn)室專項(xiàng)經(jīng)費(fèi),重慶市基礎(chǔ)與前沿研究計劃基金資助項(xiàng)目(cstc2017jcyjAX0380,cstc2015jcyjBX0065),重慶市高校優(yōu)秀成果轉(zhuǎn)化(KJZH17117)
Mann-Whitney Rank Sum Test Based Wireless Local Area Network Indoor Mapping and Localization Approach
-
School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
Funds: The National Natural Science Foundation of China (61771083, 61704015), The Postgraduate Scientific Research and Innovation Project of Chongqing (CYS17221, CYS18240), The Program for Changjiang Scholars and Innovative Research Team in University (IRT1299), The Fundamental and Frontier Research Project of Chongqing (cstc2017jcyjAX0380, cstc2015jcyjBX0065), The University Outstanding Achievement Transformation Project of Chongqing (KJZH17117)
-
摘要: 該文提出一種基于Mann-Whitney秩和檢驗(yàn)的無線局域網(wǎng)(WLAN)室內(nèi)映射與定位方法。該方法首先根據(jù)實(shí)際定位精度需求對目標(biāo)區(qū)域中的運(yùn)動路徑進(jìn)行分段,同時基于Mann-Whitney秩和檢驗(yàn)方法合并相似運(yùn)動路徑片段;然后,利用一種基于相似接收信號強(qiáng)度(RSS)序列片段的信號聚類算法,保證同一聚類中RSS樣本的物理鄰接關(guān)系;最后,通過骨干節(jié)點(diǎn)的擴(kuò)散映射,建立物理與信號空間的映射關(guān)系,實(shí)現(xiàn)對運(yùn)動用戶的定位。實(shí)驗(yàn)結(jié)果表明,相比于已有WLAN室內(nèi)映射與定位方法,該文方法在無需運(yùn)動傳感器輔助和構(gòu)建位置指紋數(shù)據(jù)庫的條件下,能夠?qū)崿F(xiàn)更高的映射與定位精度。
-
關(guān)鍵詞:
- 無線局域網(wǎng) /
- 室內(nèi)定位 /
- 行為分析 /
- Mann-Whitney秩和檢驗(yàn) /
- 空間映射
Abstract: The Mann-Whitney rank sum test based Wireless Local Area Network (WLAN) indoor mapping and localization approach is proposed. Firstly, according to the localization accuracy requirement, this approach performs the motion paths segmentation in target area, and meanwhile merges the similar motion path segments based on the Mann-Whitney rank sum test. Then, a signal clustering algorithm based on the similar Received Signal Strength (RSS) sequence segments is adopted to guarantee the physical adjacency of the RSS samples in the same cluster. Finally, the backbone nodes based diffusion mapping is used to construct the mapping relations between the physical and signal spaces, and the motion user localization is consequently achieved. The experimental results indicate that compared with the existing WLAN indoor mapping and localization approaches, the proposed one is able to achieve higher mapping and localization accuracy without motion sensor assistance or location fingerprint database construction. -
WANG Xuyu, GAO Lingjun, and MAO Shiwen. Phasefi: Phase fingerprinting for indoor localization with a deep learning approach[C]. 2015 IEEE Global Communications Conference, San Diego, USA, 2015: 1–6. RADU V, LI Jiwei, KRIARA L, et al. Poster: A hybrid approach for indoor mobile phone localization[C]. Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services, Low Wood Bay, UK, 2012: 527–528. doi: 10.1145/2307636.2307717. YAELI A, BAK P, FEIGENBLAT G, et al. Understanding customer behavior using indoor location analysis and visualization[J]. IBM Journal of Research and Development, 2014, 58(5/6): 3:1–3:12. doi: 10.1147/JRD.2014.2337552 BAHL P and PADMANABHAN V N. RADAR: An in-building RF-based user location and tracking system[C]. Proceedings of IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies, Tel Aviv, Israel, 2000: 775–784. doi: 10.1109/INFCOM.2000.832252. YOUSSEF M and AGRAWALA A. The Horus WLAN location determination system[C]. The 3rd International Conference on Mobile Systems, Applications, and Services, Seattle, USA, 2015: 205–218. KOWEERAWONG C, WIPUSITWARAKUN K, and KAEMARUNGSI K. Indoor localization improvement via adaptive RSS fingerprinting database[C]. 2013 International Conference on Information Networking, Bangkok, Thailand, 2013: 412–416. doi: 10.1109/ICOIN.2013.6496414. DURRANT-WHYTE H and BAILEY T. Simultaneous localization and mapping: Part I[J]. IEEE Robotics & Automation Magazine, 2006, 13(2): 99–110. doi: 10.1109/MRA.2006.1638022 WU Chenshu, YANG Zheng, LIU Yunhao, et al. WILL: Wireless indoor localization without site survey[J]. IEEE Transactions on Parallel and Distributed Systems, 2013, 24(4): 839–848. doi: 10.1109/TPDS.2012.179 WU Chenshu, YANG Zheng, LIU Yunhao, et al. WILL: Wireless indoor localization without site survey[C]. 2012 Proceedings IEEE INFOCOM, Orlando, USA, 2012: 64–72. doi: 10.1109/INFCOM.2012.6195809. LI Chao, JIANG Zhuqing, HUANG Chengkai, et al. A smartphone-based indoor positioning system using fuzzy theory and WLAN mapping algorithm[C]. 2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications, Hong Kong, China, 2015: 2177–2181. doi: 10.1109/PIMRC.2015.7343658. NAIK K K and PRASAD M N G. A system for locating users of WLAN using dynamic mapping in indoor and outdoor environment-LOIDS[C]. 2008 11th International Conference on Computer and Information Technology, Khulna, Bangladesh, 2008: 156–160. doi: 10.1109/ICCITECHN.2008.4802971. SHIN H, CHON Y, and CHA H. Unsupervised construction of an indoor floor plan using a smartphone[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2012, 42(6): 889–898. doi: 10.1109/TSMCC.2011.2169403 HARDEGGER M, ROGGEN D, MAZILU S, et al. ActionSLAM: Using location-related actions as landmarks in pedestrian SLAM[C]. 2012 International Conference on Indoor Positioning and Indoor Navigation, Sydney, Australia, 2012: 1–10. doi: 10.1109/IPIN.2012.6418932. BRUNO L and ROBERTSON P. WiSLAM: Improving footSLAM with WiFi[C]. 2011 International Conference on Indoor Positioning and Indoor Navigation, Guimaraes, Portugal, 2011: 1–10. doi: 10.1109/IPIN.2011.6071916. MIROWSKI P, HO T K, YI S, et al. SignalSLAM: Simultaneous localization and mapping with mixed WiFi, Bluetooth, LTE and magnetic signals[C]. International Conference on Indoor Positioning and Indoor Navigation, Montbeliard-Belfort, France, 2013: 1–10. doi: 10.1109/IPIN.2013.6817853. ZHANG Xiuming, JIN Yunye, TAN H X, et al. CIMLoc: A crowdsourcing indoor digital map construction system for localization[C]. IEEE 9th International Conference on Intelligent Sensors, Sensor Networks and Information Processing, Singapore, 2014: 1–6. doi: 10.1109/ISSNIP.2014.6827640. ZHOU Mu, ZHANG Qiao, WANG Yu, et al. Hotspot ranking based indoor mapping and mobility analysis using crowdsourced Wi-Fi signal[J]. IEEE Access, 2017, 5: 3594–3602. doi: 10.1109/ACCESS.2017.2674798 ZHOU Mu, ZHANG Qiao, TIAN Zengshan, et al. Indoor WLAN localization using high-dimensional manifold alignment with limited calibration load[C]. 2017 IEEE International Conference on Communications, Paris, France, 2017: 1–6. doi: 10.1109/ICC.2017.7997042. WANG Lin, LIU Wenyuan, JING Nan, et al. Simultaneous navigation and pathway mapping with participating sensing[J]. Wireless Networks, 2015, 21(8): 2727–2745. doi: 10.1007/s11276-015-0944-x MUTHUKRISHNAN K, VAN DER ZWAAG B J, and HAVINGA P. Inferring motion and location using WLAN RSSI[C]. Proceedings of the 2nd International Workshop on Mobile Entity Localization and Tracking in GPS-less Environments, Orlando, USA, 2009: 163–182. SHIN H and CHA H. Wi-Fi fingerprint-based topological map building for indoor user tracking[C]. 2010 IEEE 16th International Conference on Embedded and Real-Time Computing Systems and Applications, Macau, China, 2010: 105–113. doi: 10.1109/RTCSA.2010.23. HART P E, NILSSON N J, and RAPHAEL B. A formal basis for the heuristic determination of minimum cost paths[J]. IEEE Transactions on Systems Science and Cybernetics, 1968, 4(2): 100–107. doi: 10.1109/TSSC.1968.300136 YU Jie, AMORES J, SEBE N, et al. Distance learning for similarity estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(3): 451–462. doi: 10.1109/TPAMI.2007.70714 MANN H B and WHITNEY D R. On a test of whether one of two random variables is stochastically larger than the other[J]. The Annals of Mathematical Statistics, 1947, 18(1): 50–60. doi: 10.1214/aoms/1177730491 吳喜之, 趙博娟. 非參數(shù)統(tǒng)計[M]. 第4版, 北京: 中國統(tǒng)計出版社, 2013: 52–56.WU Xizhi and ZHAO Bojuan. Nonparametric Test[M]. 4th ed., Beijing: China Statistics Press, 2013: 52–56. 王星, 褚挺進(jìn). 非參數(shù)統(tǒng)計[M]. 第2版, 北京: 清華大學(xué)出版社, 2014: 332–334.WANG Xing and CHU Tingjin. Non-Parametric Statistics[M]. 2nd ed., Beijing: Tsinghua University Press, 2014: 332–334. HATA M. Empirical formula for propagation loss in land mobile radio services[J]. IEEE Transactions on Vehicular Technology, 1980, 29(3): 317–325. doi: 10.1109/T-VT.1980.23859 RIRI P C, KRISTALINA P, and SUDARSONO A. Cluster-based pathloss exponential modeling for indoor positioning in wireless sensor network[C]. 2016 International Conference on Knowledge Creation and Intelligent Computing, Manado, Indonesia, 2016: 53–59. doi: 10.1109/KCIC.2016.7883625. ZHOU Mu, ZHANG Qiao, TIAN Zengshan, et al. IMLours: Indoor mapping and localization using time-stamped WLAN received signal strength[C]. 2015 IEEE Wireless Communications and Networking Conference, New Orleans, USA, 2015: 1817–1822. 劉東海, 陸麗宇. 小概率事件與實(shí)際問題例談[J]. 科技經(jīng)濟(jì)導(dǎo)刊, 2018, 26(12): 114.LIU Donghai and LU Liyu. Small probability events and examples of practical problems[J]. Technology and Economic Guide, 2018, 26(12): 114. 肖莉. 基于路徑損耗的WiFi室內(nèi)定位系統(tǒng)[D]. [碩士論文], 西安電子科技大學(xué), 2017: 19–31.XIAO Li. The WiFi indoor positioning system based on path loss model[D]. [Master dissertation], Xidian University, 2017: 19–31. 張文君, 顧行發(fā), 陳良富, 等. 基于均值-標(biāo)準(zhǔn)差的K均值初始聚類中心選取算法[J]. 遙感學(xué)報, 2006, 10(5): 715–721. doi: 10.3321/j.issn:1007-4619.2006.05.017ZHANG Wenjun, GU Xingfa, CHEN Liangfu, et al. An algorithm for initilizing of K-means clustering based on mean-standard deviation[J]. Journal of Remote Sensing, 2006, 10(5): 715–721. doi: 10.3321/j.issn:1007-4619.2006.05.017 -