“去二存一”混合機制下的病毒擴散模型及穩(wěn)定性分析
doi: 10.11999/JEIT180381
-
空軍工程大學(xué)信息與導(dǎo)航學(xué)院 ??西安 ??710077
Virus Propagation Model and Stability Under the Hybrid Mechanism of “Two-go and One-live”
-
Institute of Information and Navigation, Air Force Engineering University, Xi’an 710077, China
-
摘要:
隨著網(wǎng)絡(luò)信息系統(tǒng)的發(fā)展,網(wǎng)絡(luò)病毒擴散方式及免疫策略成為網(wǎng)絡(luò)安全領(lǐng)域研究的熱點之一。該文研究了一類新型混合攻擊病毒,并根據(jù)其特點將這類病毒定義為“去二存一”型病毒。通過分析新型病毒的攻擊方式,構(gòu)建了“去二存一”混合機制下病毒的SEIQRS信息擴散模型。在此基礎(chǔ)上,求解對應(yīng)系統(tǒng)的平衡點,并運用Routh-Hurwitz判據(jù)分析了系統(tǒng)基本再生數(shù)R0及其對系統(tǒng)穩(wěn)定性的影響。最后,仿真驗證了模型的有效性和穩(wěn)定性。
-
關(guān)鍵詞:
- 病毒擴散 /
- 混合機制 /
- 穩(wěn)定性分析
Abstract:With the development of network information system, virus propagation and immunization strategy become one of the hot topics in the field of network security. In this paper, a new virus with hybrid attacking is introduced, which can attack network in two modes. One is to attack and infect the network nodes directly, and the another is to hide itself in the nodes by hiding its viral characteristic. According to its characteristics, this type of virus is defined as " Two-go and One-live” and the corresponding virus propagation model is established. Moreover, the stability of the system is studied by solving the equilibrium points and analyzing the basic reproduction number R0. Numerical simulations are presented to verify effectiveness and stability of the novel model.
-
Key words:
- Virus propagation /
- Hybrid mechanism /
- Stability analyzing
-
張書奎, 崔志明, 龔聲蓉, 等. 傳感器網(wǎng)絡(luò)病毒感染傳播局域控制研究[J]. 電子學(xué)報, 2009, 37(4): 877–883. doi: 10.3321/j.issn:0372-2112.2009.04.038ZHANG Shukui, CUI Zhiming, GONG Shengrong, et al. An investigation on local area control of compromised nodes spreading in wireless sensor networks[J]. Acta Electronica Sinica, 2009, 37(4): 877–883. doi: 10.3321/j.issn:0372-2112.2009.04.038 王田, 吳群, 文晟, 等. 無線傳感網(wǎng)中移動式蠕蟲的抑制與清理[J]. 電子與信息學(xué)報, 2016, 38(9): 2202–2207. doi: 10.11999/JEIT151311WANG Tian, WU Qun, WEN Sheng, et al. The inhibition and clearup of the mobile worm in wireless sensor networks[J]. Journal of Electronics &Information Technology, 2016, 38(9): 2202–2207. doi: 10.11999/JEIT151311 E安全. 黑客戰(zhàn)術(shù)三十六計之" 聲東擊西”[OL]. https://www.easyaq.com/news/1538639872.shtml, 2017, 11. ZHANG Zizhen and BI Dianjie. Bifurcation analysis in a delayed computer virus model with the effect of external computers[J]. Advances in Difference Equations, 2015, 2015(1): 317–330. doi: 10.1186/s13662-015-0652-y VALDEZ J, GUEVARA P, and AUDELO J. Numerical approaching of SIR epidemic model for propagation of computer worms[J]. IEEE Latin America Transactions, 2015, 13(10): 3452–3460. doi: 10.1109/TLA.2015.7387254 QU Bo and WANG Huijuan. SIS epidemic spreading with correlated heterogeneous infection rates[J]. Physica A: Statistical Mechanics and its Applications, 2017, 472(1): 13–24. TANG Qian and TENG Zhidong. A new Lyapunov function for SIRS epidemic models[J]. Bulletin of the Malaysian Mathematical Sciences Society, 2017, 40(1): 237–258. doi: 10.1007/s40840-016-0315-5 顧??? 蔣國平, 夏玲玲. 基于狀態(tài)概率轉(zhuǎn)移的SIRS病毒傳播模型及其臨界值分析[J]. 計算機科學(xué), 2016, 43(6): 64–67. doi: 10.11896/j.issn.1002-137X.2016.6A.014GU Haijun, JIANG Guoping, and XIA Lingling. SIRS epidemic model and its threshold based on state transition probability[J]. Computer Science, 2016, 43(6): 64–67. doi: 10.11896/j.issn.1002-137X.2016.6A.014 YANG Luxing and YANG Xiaofan. The impact of nonlinear infection rate on the spread of computer virus[J]. Nonlinear Dynamics, 2015, 82(2): 85–95. 關(guān)治洪, 亓玉娟, 姜曉偉, 等. 基于復(fù)雜網(wǎng)絡(luò)的病毒傳播模型及其穩(wěn)定性[J]. 華中科技大學(xué)學(xué)報, 2011, 39(1): 114–117.GUAN Zhihong, QI Yujuan, JIANG Xiaowei, et al. Virus propagation dynamic model and stability on complex network[J]. Journal Huazhong University of science &Technology, 2011, 39(1): 114–117. XU Degang, XU Xiyang, XIE Yongfang, et al. Optimal control of an SIVRS epidemic spreading model with virus variation based on complex networks[J]. Communications in Nonlinear Science and Numerical Simulation, 2017, 48(1): 200–210. KHANH G H and HUY N B. Stability analysis of a computer virus propagation model with antidote in vulnerable system[J]. Acta Mathematica Scientia, 2016, 36(1): 49–61. doi: 10.1016/S0252-9602(15)30077-1 WANG Xu, NI Wei, ZHENG Kangfeng, et al. Virus propagation modeling and convergence analysis in large scale networks[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(10): 2241–2254. doi: 10.1109/TIFS.2016.2581305 TIAN Daxin, LIU Chao, SHENG Zhengguo, et al. Analytical model of spread of epidemics in open finite regions[J]. IEEE Access, 2017, 5(2): 9673–9681. LIU Siyu, JIN Jiyu, and WANG Zhisen. Influence of node mobility on virus spreading behaviors in multi-hop network[J]. EURASIP Journal on Wireless Communications and Networking, 2016, 2016(1): 172–182. doi: 10.1186/s13638-016-0667-4 ZHANG Chunming and HUANG Haitao. Optimal control strategy for a novel computer virus propagation model on scale-free networks[J]. Physica A: Statistical Mechanics and Its Applications, 2016, 451(1): 251–265. HAN Dun, SUN Mei, and LI Dandan. The virus variation model by considering the degree-dependent spreading rate[J]. Physica A: Statistical Mechanics and Its Applications, 2015, 433(1): 42–50. XU Qichao, SU Zhou, and YANG Kan. Optimal control theory based epidemic information spreading scheme for mobile social users with energy constraint[J]. IEEE Access, 2017, 5(1): 3536–3547. 王小娟, 宋梅, 郭世澤, 等. 基于有向滲流理論的關(guān)聯(lián)微博轉(zhuǎn)發(fā)網(wǎng)絡(luò)信息傳播研究[J]. 物理學(xué)報, 2015, 64(4): 4502–4510. doi: 10.7498/aps.64.044502WANG Xiaojuan, SONG Mei, GUO Shize, et al. Information spreading in correlated microblog reposting network based on directed percolation theory[J]. Acta Physica Sinica, 2015, 64(4): 4502–4510. doi: 10.7498/aps.64.044502 LI Ming and WANG Binghong. Percolation on networks with dependence links[J]. Chinese Physics B, 2014, 23(7): 6402–6411. -