非完備空際間疊干擾下星基導(dǎo)航信號捕獲性能分析
doi: 10.11999/JEIT180355
-
國防科技大學(xué)電子對抗學(xué)院 ??合肥 ??230037
Performance Analysis of the Satellite-based Navigation Signal Acquisition under the Non-complete Spatial Overlapped Interference
-
Institute of Electronic Warfare, National University of Defense Technology, Hefei 230037, China
-
摘要:
該文針對星基定位接收機(jī)導(dǎo)航信號捕獲的干擾問題,提出一種非完備空際間疊干擾信號模型。首先對提出的干擾模型以及非完備空際間疊引起的干擾裂變效應(yīng)進(jìn)行了闡述分析與推究證明,而后推導(dǎo)計(jì)算出了星基定位接收機(jī)輸出信干噪比(SINR)與空際間疊長度的函數(shù)式,論證了兩者函數(shù)單調(diào)性關(guān)系。仿真實(shí)驗(yàn)表明星基定位接收機(jī)輸出信干噪比為空際間疊長度的單調(diào)增函數(shù),短空際間疊長度干擾可抑制3維頻碼域相關(guān)峰突起,降消星基定位接收機(jī)捕獲性能。
-
關(guān)鍵詞:
- 星基定位 /
- 空際間疊干擾 /
- 導(dǎo)航信號捕獲 /
- 3維頻碼域相關(guān)峰
Abstract:A non-complete spatial overlapped interference signal model is proposed based on the jamming research against satellite-based positioning receiver for the acquisition of navigation signal. Firstly, the interference model is introduced and analyzed, and the signal fission effect induced by non-complete spatial overlapped interference is demonstrated. Then, the relationship between SINR of satellite-based positioning receiver and spatial overlapped length is derived, and the monotonic relationship of them is deduced. Simulation results suggest that SINR of satellite-based positioning receiver is the monotonically increasing function of spatial overlapped length, and the short-spatial-overlapped interference can restrain the peak amplitude of three dimensional frequency and coded domain correlation, degrading the performance of acquisition of satellite-based positioning receiver.
-
表 1 仿真實(shí)驗(yàn)參數(shù)設(shè)置
載波頻率 1.57542 GHz 陣元間距 0.5波長 信道環(huán)境 高斯白噪聲信道 干擾類型 隨機(jī)噪聲干擾 陣元數(shù)目 8 期望信號入射方位 10° 干擾信號入射方位 50° 陣列形狀 均勻線性陣列天線 下載: 導(dǎo)出CSV
-
劉志文, 王荔, 徐友根. 四元數(shù)域?qū)显鰪V寬線性自適應(yīng)波束形成[J]. 電子與信息學(xué)報(bào), 2017, 39(7): 1525–1531. doi: 10.11999/JEIT160988LIU Wenzhi, WANG Li, and XU Yougen. Quaternion-valued widely linear adaptive beamforming via involution augmentation[J]. Journal of Electronics &Information Technology, 2017, 39(7): 1525–1531. doi: 10.11999/JEIT160988 錢宇寧, 曹欣榮, 陳亞偉, 等. 被動(dòng)聲吶盲分離自適應(yīng)-自適應(yīng)波束形成算法研究[J]. 電子與信息學(xué)報(bào), 2017, 39(10): 2390–2396. doi: 10.11999/JEIT170099QIAN Yuning, CAO Xinrong, CHEN Yawei, et al. Research on adaptive-adaptive beamforming algorithm based on blind separation for passive sonar[J]. Journal of Electronics &Information Technology, 2017, 39(10): 2390–2396. doi: 10.11999/JEIT170099 ASHWINI D and ZALAWADIA K. Performance analysis of LMS adaptive beamforming algorithm for smart antenna system[J]. International Journal of Computer Applications, 2018, 179(28): 34–37. doi: 10.5120/ijca2018916633 KORAYEM R and BENDOUKHA S. A gradient descent implementation of the adaptive robust narrowband constrained LMS beamformer[J]. Signal Image & Video Processing, 2017(8): 1–8. doi: 10.1007/s11760-017-1180-x VOROBYOV S A, GERSHMAN A B, and LUO Z Q. Robust adaptive beamforming using worst-case performance optimization: A solution to the signal mismatch problem[J]. IEEE Transations on Signal Processing, 2003, 51(2): 313–324. doi: 10.1109/TSP.2002.806865 XUE Yang, JU Lanxie, HUI Yongli, et al. Robust adaptive beamforming of coherent signals in the presence of the unknown mutual coupling[J]. IET Communications, 2018, 12(1): 75–81. doi: 10.1049/iet-com.2017.0314 RAKWSH P, PRIYANKA S S, and KUMAR T K. Performance evaluation of beamforming techniques for speech enhancement[C]. International Conference on Signal Processing, Xiamen, China, 2017: 1–5. HAO Zhanghong, ZHAO Hongzhi, SHAO Shihai, et al. Time-varying single tone jamming suppression based on frequency interference cancellation[J]. International Journal of Signal Processing, Image Processing and Pattern Recognition, 2014, 6(3): 395–404. doi: 10.14257/ijsip.2013.6.6.35 朱林, 方勝良, 吳付祥. 分布式閃爍干擾下衛(wèi)星數(shù)據(jù)鏈效能評估與仿真[J]. 信息工程大學(xué)學(xué)報(bào), 2014, 15(6): 697–701. doi: 10.3969/j.issn.1671-0673.2014.06.009ZHU Lin, FANG Shengliang, and WU Fuxiang. Evaluation and simulation of the efficiency of satellite datalinks in the presence of distributing blinking jamming[J]. Journal of Information Engineering University, 2014, 15(6): 697–701. doi: 10.3969/j.issn.1671-0673.2014.06.009 YANG Tatsen. Measurements of spatial coherence beamforming gain and diversity gain for underwater acoustic communications[C]. IEEE Oceans, Washington, DC, USA, 2005: 268–272. YANG Tatsen. A study of spatial processing gain in underwater acoustic communications[J]. IEEE Journal of Oceanic Engineering, 2007, 32(3): 689–709. doi: 10.1109/JOE.2007.897072 WILLIAM M C, JAMES F L, WILLIAM L S, et al. Sound transmission and spatial coherence in selected shallow-water areas: Measurements and theory[J]. Journal of Computational Acoustics, 2006, 14(2): 265–298. doi: 10.1142/S0218396X06003037 LU Ming. A Toeplitz-induced mapping technique in sensor array processing[J]. IEEE Transactions on Signal Processing, 1995, 43(5): 1128–1139. doi: 10.1109/78.382398 REDDI S S. Eigenvector properties of Toeplitz matrices and their application to spectral analysis of time series[J]. Signal Processing, 1984, 7(1): 45–56. doi: 10.1016/0165-1684(84)90023-9 劉聰鋒, 廖桂生. 線性干擾參數(shù)約束的穩(wěn)健LSMI波束形成算法[J]. 電子學(xué)報(bào), 2009, 37(6): 1386–1392. doi: 10.3321/j.issn:0372-2112.2009.06.044LIU Congfeng and LIAO Guisheng. Robust LSMI beamforming algorithm under linear jammer parameter constraint[J]. Acta Electronica Sinica, 2009, 37(6): 1386–1392. doi: 10.3321/j.issn:0372-2112.2009.06.044 HASSANIEN A, VOROBYOV S A, and WONG K M. Robust adaptive beamforming using sequential quadratic programming: An iterative solution to the mismatch problem[J]. IEEE Signal Processing Letters, 2008, 15: 733–736. doi: 10.1109/LSP.2008.2001115 -