一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

基于雙馬爾科夫鏈的勢概率假設(shè)密度濾波

劉江義 王春平

劉江義, 王春平. 基于雙馬爾科夫鏈的勢概率假設(shè)密度濾波[J]. 電子與信息學報, 2019, 41(2): 492-497. doi: 10.11999/JEIT180352
引用本文: 劉江義, 王春平. 基于雙馬爾科夫鏈的勢概率假設(shè)密度濾波[J]. 電子與信息學報, 2019, 41(2): 492-497. doi: 10.11999/JEIT180352
Jiangyi LIU, Chunping WANG. Cardinalized Probability Hypothesis Density Filter Based on Pairwise Markov Chains[J]. Journal of Electronics & Information Technology, 2019, 41(2): 492-497. doi: 10.11999/JEIT180352
Citation: Jiangyi LIU, Chunping WANG. Cardinalized Probability Hypothesis Density Filter Based on Pairwise Markov Chains[J]. Journal of Electronics & Information Technology, 2019, 41(2): 492-497. doi: 10.11999/JEIT180352

基于雙馬爾科夫鏈的勢概率假設(shè)密度濾波

doi: 10.11999/JEIT180352
詳細信息
    作者簡介:

    劉江義:男,1988年生,博士生,研究方向為多目標跟蹤、信息融合等

    王春平:男,1965年生,教授,研究方向為圖像處理、目標跟蹤等

    通訊作者:

    王春平 wchp17@139.com

  • 中圖分類號: TP391

Cardinalized Probability Hypothesis Density Filter Based on Pairwise Markov Chains

  • 摘要:

    針對已有的基于雙馬爾科夫鏈(PMC)模型的勢概率假設(shè)密度(PMC-CPHD)濾波算法無法實現(xiàn)的問題,將PMC-CPHD算法改進為多項式形式以便于算法的實現(xiàn),并給出了改進算法的高斯混合(GM)實現(xiàn)。實驗結(jié)果表明給出的GM實現(xiàn)能夠有效實現(xiàn)多目標跟蹤,并且比基于PMC模型的概率假設(shè)密度(PMC-PHD)算法的GM實現(xiàn)提高了目標個數(shù)估計的穩(wěn)定性。

  • 圖  1  仿真場景及跟蹤結(jié)果

    圖  2  目標個數(shù)估計及估計方差

  • GAO Yiyue, JIANG Defu, and LIU Ming. Particle-gating SMC-PHD filter[J]. Signal Processing, 2017, 130: 64–73. doi: 10.1016/j.sigpro.2016.06.017
    楊丹, 姬紅兵, 張永權(quán). 未知雜波條件下樣本校正的勢估計概率假設(shè)密度濾波算法[J]. 電子與信息學報, 2018, 40(4): 912–919. doi: 10.11999/JEIT170666

    YANG Dan, JI Hongbing, and ZHANG Yongquan. A cardinalized probability hypothesis density filter with unknown clutter estimation using corrected sample set[J]. Journal of Electronics &Information Technology, 2018, 40(4): 912–919. doi: 10.11999/JEIT170666
    袁常順, 王俊, 孫進平, 等. 一種幅度信息輔助多伯努利濾波算法[J]. 電子與信息學報, 2016, 38(2): 464–471. doi: 10.11999/JEIT150683

    YUAN Changshun, WANG Jun, SUN Jinping, et al. A multi-bernoulli filtering algorithm using amplitude information[J]. Journal of Electronics &Information Technology, 2016, 38(2): 464–471. doi: 10.11999/JEIT150683
    陳輝, 韓崇昭. Rao-Blackwellized粒子勢均衡多目標多伯努利濾波[J]. 控制理論與應(yīng)用, 2016, 33(2): 146–153. doi: 10.7641/CTA.2016.50588

    CHEN Hui and HAN Chongzhao. Rao-Blackwellized particle cardinality balanced multi-target multi-bernoulli filter[J]. Control Theory &Applications, 2016, 33(2): 146–153. doi: 10.7641/CTA.2016.50588
    QIU Hao, HUANG Gaoming, and GAO Jun. Variational bayesian labeled multi-bernoulli filter with unknown sensor noise statistics[J]. Chinese Journal of Aeronautics, 2016, 29(5): 1378–1384. doi: 10.1016/j.cja.2016.05.002
    朱書軍, 劉偉峰, 崔海龍. 基于廣義標簽多伯努利濾波的可分辨群目標跟蹤算法[J]. 自動化學報, 2017, 43(12): 2178–2189. doi: 10.16383/j.aas.2017.c160334

    ZHU Shujun, LIU Weifeng, and CUI Hailong. Multiple resolvable groups tracking using the GLMB filter[J]. Acta Automatica Sinica, 2017, 43(12): 2178–2189. doi: 10.16383/j.aas.2017.c160334
    PETETIN Y and DESBOUVRIES F. Bayesian multi-object filtering for pairwise Markovchains[J]. IEEE Transactions on Signal Processing, 2013, 61(18): 4481–4490. doi: 10.1109/TSP.2013.2271751
    PIECZYNSKI W. Pairwise Markov chains[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 634–639. doi: 10.1109/TPAMI.2003.1195998
    MAHLER R. Tracking targets with pairwise-Markov dynamics[C]. International Conference on Information Fusion, Washington, DC, USA, 2015: 280-286.
    MAHLER R. On multitarget pairwise-Markov models[J]. Society of Photo-Optical Instrumentation Engineers(SPIE) , 2015, 9474 , 94740D: 1–12. doi: 10.1117/12.2177192
    MAHLER R. Multitarget bayes filtering via first-order multitarget moments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1152–1178. doi: 10.1109/TAES.2003.1261119
    ERDINC O, WILLETT P, and BARSHALOM Y. A physical-space approach for the probability hypothesis density and cardinalized probability hypothesis density filters[C]. Proceedings of the SPIE Conference on Signal and Data Processing of Small Targets, Orlando, USA, 2006, 6236, 623619: 1-12.
    NIE Yongfang and ZHANG Tao. An improved merging algorithm for the gaussian mixture probability hypothesis density filter[C]. Chinese Control and Decision Conference, Chongqing, China, 2017: 5687-5691.
    DONG Peng, JING Zhongliang, GONG Deren, et al. Maneuvering multi-target tracking based on variable structure multiple model GMCPHD filter[J]. Signal Processing, 2017, 141: 158–167. doi: 10.1016/j.sigpro.2017.06.004
    YANG Jinlong, LI Peng, YANG Le, et al. An improved ET-GM-PHD filter for multiple closely-spaced extended target tracking[J]. International Journal of Control, Automation and Systems, 2017, 15(1): 468–472. doi: 10.1007/s12555-015-0193-x
  • 加載中
圖(2)
計量
  • 文章訪問數(shù):  2249
  • HTML全文瀏覽量:  758
  • PDF下載量:  59
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2018-04-17
  • 修回日期:  2018-09-10
  • 網(wǎng)絡(luò)出版日期:  2018-09-25
  • 刊出日期:  2019-02-01

目錄

    /

    返回文章
    返回