Cardinalized Probability Hypothesis Density Filter Based on Pairwise Markov Chains
-
Electronic and optical engineering Department, Shijiazhuang Campus of Army Engineering University, Shijiazhuang 050003, China
-
摘要:
針對已有的基于雙馬爾科夫鏈(PMC)模型的勢概率假設(shè)密度(PMC-CPHD)濾波算法無法實現(xiàn)的問題,將PMC-CPHD算法改進為多項式形式以便于算法的實現(xiàn),并給出了改進算法的高斯混合(GM)實現(xiàn)。實驗結(jié)果表明給出的GM實現(xiàn)能夠有效實現(xiàn)多目標跟蹤,并且比基于PMC模型的概率假設(shè)密度(PMC-PHD)算法的GM實現(xiàn)提高了目標個數(shù)估計的穩(wěn)定性。
-
關(guān)鍵詞:
- 雙馬爾科夫鏈 /
- 勢概率假設(shè)密度 /
- 高斯混合
Abstract:In view of the problem that the Cardinalized Probability Hypothesis Density (CPHD) probability hypothesis density filtering algorithm based on the Pairwise Markov Chains (PMC) model (PMC-CPHD) is not suitable for implementation, the PMC-CPHD algorithm is modified into a polynomial form to facilitate implementation, and the Gauss Mixture (GM) implementation of the improved algorithm is given. The experimental results show that the given GM implementation realizes multitarget tracking effectively, and improves the stability of the target number estimation compared with the GM implementation of the probability hypothesis density filtering algorithm based on the PMC model (PMC-PHD).
-
GAO Yiyue, JIANG Defu, and LIU Ming. Particle-gating SMC-PHD filter[J]. Signal Processing, 2017, 130: 64–73. doi: 10.1016/j.sigpro.2016.06.017 楊丹, 姬紅兵, 張永權(quán). 未知雜波條件下樣本校正的勢估計概率假設(shè)密度濾波算法[J]. 電子與信息學報, 2018, 40(4): 912–919. doi: 10.11999/JEIT170666YANG Dan, JI Hongbing, and ZHANG Yongquan. A cardinalized probability hypothesis density filter with unknown clutter estimation using corrected sample set[J]. Journal of Electronics &Information Technology, 2018, 40(4): 912–919. doi: 10.11999/JEIT170666 袁常順, 王俊, 孫進平, 等. 一種幅度信息輔助多伯努利濾波算法[J]. 電子與信息學報, 2016, 38(2): 464–471. doi: 10.11999/JEIT150683YUAN Changshun, WANG Jun, SUN Jinping, et al. A multi-bernoulli filtering algorithm using amplitude information[J]. Journal of Electronics &Information Technology, 2016, 38(2): 464–471. doi: 10.11999/JEIT150683 陳輝, 韓崇昭. Rao-Blackwellized粒子勢均衡多目標多伯努利濾波[J]. 控制理論與應(yīng)用, 2016, 33(2): 146–153. doi: 10.7641/CTA.2016.50588CHEN Hui and HAN Chongzhao. Rao-Blackwellized particle cardinality balanced multi-target multi-bernoulli filter[J]. Control Theory &Applications, 2016, 33(2): 146–153. doi: 10.7641/CTA.2016.50588 QIU Hao, HUANG Gaoming, and GAO Jun. Variational bayesian labeled multi-bernoulli filter with unknown sensor noise statistics[J]. Chinese Journal of Aeronautics, 2016, 29(5): 1378–1384. doi: 10.1016/j.cja.2016.05.002 朱書軍, 劉偉峰, 崔海龍. 基于廣義標簽多伯努利濾波的可分辨群目標跟蹤算法[J]. 自動化學報, 2017, 43(12): 2178–2189. doi: 10.16383/j.aas.2017.c160334ZHU Shujun, LIU Weifeng, and CUI Hailong. Multiple resolvable groups tracking using the GLMB filter[J]. Acta Automatica Sinica, 2017, 43(12): 2178–2189. doi: 10.16383/j.aas.2017.c160334 PETETIN Y and DESBOUVRIES F. Bayesian multi-object filtering for pairwise Markovchains[J]. IEEE Transactions on Signal Processing, 2013, 61(18): 4481–4490. doi: 10.1109/TSP.2013.2271751 PIECZYNSKI W. Pairwise Markov chains[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 634–639. doi: 10.1109/TPAMI.2003.1195998 MAHLER R. Tracking targets with pairwise-Markov dynamics[C]. International Conference on Information Fusion, Washington, DC, USA, 2015: 280-286. MAHLER R. On multitarget pairwise-Markov models[J]. Society of Photo-Optical Instrumentation Engineers(SPIE) , 2015, 9474 , 94740D: 1–12. doi: 10.1117/12.2177192 MAHLER R. Multitarget bayes filtering via first-order multitarget moments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1152–1178. doi: 10.1109/TAES.2003.1261119 ERDINC O, WILLETT P, and BARSHALOM Y. A physical-space approach for the probability hypothesis density and cardinalized probability hypothesis density filters[C]. Proceedings of the SPIE Conference on Signal and Data Processing of Small Targets, Orlando, USA, 2006, 6236, 623619: 1-12. NIE Yongfang and ZHANG Tao. An improved merging algorithm for the gaussian mixture probability hypothesis density filter[C]. Chinese Control and Decision Conference, Chongqing, China, 2017: 5687-5691. DONG Peng, JING Zhongliang, GONG Deren, et al. Maneuvering multi-target tracking based on variable structure multiple model GMCPHD filter[J]. Signal Processing, 2017, 141: 158–167. doi: 10.1016/j.sigpro.2017.06.004 YANG Jinlong, LI Peng, YANG Le, et al. An improved ET-GM-PHD filter for multiple closely-spaced extended target tracking[J]. International Journal of Control, Automation and Systems, 2017, 15(1): 468–472. doi: 10.1007/s12555-015-0193-x -