基于多維測(cè)量信息的壓縮感知多目標(biāo)無(wú)源被動(dòng)定位算法
doi: 10.11999/JEIT180333
-
1.
陸軍工程大學(xué)通信工程學(xué)院 ??南京 ??210007
-
2.
武警部隊(duì) ??北京 ??100089
Compressive Sensing Based Multi-target Device-free Passive Localization Algorithm Using Multidimensional Measurement Information
-
1.
College of Communications Engineering, Army Engineering University of PLA, Nanjing 210007, China
-
2.
The Chinese Armed Police Force, Beijing 100089, China
-
摘要:
無(wú)源被動(dòng)定位是入侵者檢測(cè)、環(huán)境監(jiān)測(cè)以及智能交通等應(yīng)用的關(guān)鍵問(wèn)題之一?,F(xiàn)有的無(wú)源被動(dòng)定位方法可通過(guò)信道狀態(tài)信息獲取多個(gè)維度上的測(cè)量信息,但是現(xiàn)有方案未能充分挖掘多個(gè)信道上的頻率分集以提高定位性能。該文提出一種基于多維測(cè)量信息的壓縮感知多目標(biāo)無(wú)源被動(dòng)定位算法,在壓縮感知框架下利用多維測(cè)量信息的頻率分集提高定位精度和魯棒性。根據(jù)鞍面模型建立無(wú)源字典,將多目標(biāo)無(wú)源被動(dòng)定位問(wèn)題建模成多測(cè)量向量聯(lián)合稀疏恢復(fù)問(wèn)題,并利用多維稀疏貝葉斯學(xué)習(xí)算法估計(jì)目標(biāo)位置向量。仿真結(jié)果表明,該算法能有效利用多維測(cè)量信息提高定位性能。
-
關(guān)鍵詞:
- 無(wú)源被動(dòng)定位 /
- 壓縮感知 /
- 多測(cè)量向量 /
- 稀疏貝葉斯學(xué)習(xí)
Abstract:Device-free passive localization is a key issue of the intruder detection, environmental monitoring, and intelligent transportation. The existing device-free passive localization method can obtain the multidimensional measurement information by channel state information, but the existing scheme can not fully exploit the frequency diversity on multiple channels to improve the localization performance. This paper proposes a Compressive Sensing (CS) based multi-target device-free passive localization algorithm using multidimensional measurement information. It takes advantage of the frequency diversity of multidimensional measurement information to improve the accuracy and robustness of localization results under the CS framework. The dictionary is built according to the saddle surface model, and the multi-target device-free passive localization problem is modeled as a joint sparse recovery problem based on multiple measurement vectors. The target location vector is estimated based on the multiple sparse Bayesian learning algorithm. Simulation results indicate that the proposed algorithm can make full use of the multidimensional measurement information to improve the localization performance.
-
表 1 聯(lián)合稀疏恢復(fù)算法
(1) 令${\gamma _{{\rm{th}}}} = {10^{ - 3}}$, ${\tau _{\max }} = {10^3}$, ${\eta _{{\rm{th}}}} = - 10\ {\rm{dB}}$, $\gamma = \tau = 0$。 (2) while ($\gamma \ge {\gamma _{{\rm{th}}}}$或$\tau \le {\tau _{\max }}$) do (3) 根據(jù)式(16)和式(17),計(jì)算${{Σ}}$和${{Π}}$。 (4) 根據(jù)式(19)和式(20),更新參數(shù)${\alpha _n}$和${\sigma ^2}$。 (5) 令$\gamma \leftarrow \parallel{Y} - {{Φ}}{{Π}}\parallel $, $\tau \leftarrow \tau + 1$。 (6) end while (7) 選擇使$\left\| {{{{y}}^f} - {{Φ}}{{{Π}} _{ \cdot f}}} \right\|$取得最小值的子信道$\hat f$。 (8) $\forall n \in \left\{ {1,2,·\!·\!·,N} \right\}$,若$20\lg ({{{Π}} _{nf}}/\mathop {\max }\limits_i |{{{Π}} _{i\hat f}}|) < {\eta _{{\rm{th}}}}$,則${{{Π}} _{n\hat f}} = 0$。 (9) 令恢復(fù)的位置向量$\hat {{θ}} = {{{Π}} _{ \cdot \hat f}}$,目標(biāo)個(gè)數(shù)${\widehat K} = |\hat {{θ}}|$。 下載: 導(dǎo)出CSV
表 2 平均定位誤差與定位均方根誤差的比較
定位算法 OMP BP GMP BCS VEM 自有算法($F = 5$) 自有算法($F = 10$) 自有算法($F = 20$) 平均定位誤差 3.2028 1.3028 2.1795 0.8955 0.6196 0.4631 0.2744 0.2584 定位均方根誤差 3.3801 1.5735 2.4543 1.5838 1.0036 0.8392 0.6720 0.4738 下載: 導(dǎo)出CSV
-
LIU Dawei, SHENG Bin, HOU Fen, et al. From wireless positioning to mobile positioning: An overview of recent advances[J]. IEEE Systems Journal, 2014, 8(4): 1249–1259. doi: 10.1109/JSYST.2013.2295136 馮奇, 曲長(zhǎng)文, 周強(qiáng). 多運(yùn)動(dòng)站異步觀測(cè)條件下的直接定位算法[J]. 電子與信息學(xué)報(bào), 2017, 39(2): 417–422. doi: 10.11999/JEIT160314FENG Qi, QU Changwen, and ZHOU Qiang. Direct position determination using asynchronous observations of multiple moving sensors[J]. Journal of Electronics &Information Technology, 2017, 39(2): 417–422. doi: 10.11999/JEIT160314 孫保明, 郭艷, 李寧, 等. 無(wú)線傳感器網(wǎng)絡(luò)中基于壓縮感知的動(dòng)態(tài)目標(biāo)定位算法[J]. 電子與信息學(xué)報(bào), 2016, 38(8): 1858–1864. doi: 10.11999/JEIT151203SUN Baoming, GUO Yan, LI Ning, et al. Mobile target localization algorithm using compressive sensing in wireless sensor networks[J]. Journal of Electronics &Information Technology, 2016, 38(8): 1858–1864. doi: 10.11999/JEIT151203 YOUSSEF M, MAH M, and AGRAWALA A. Challenges: Device-free passive localization for wireless environments[C]. Proceedings of the ACM MobiCom’07, Montreal, 2007: 222–229. ZHANG Dian, MA Jian, CHEN Quanbin, et al. An RF-based system for tracking transceiver-free objects[C]. Proceedings of the 5th IEEE International Conference on Pervasive Computing and Communications (PerCom’07), White Plains, 2007: 135–144. WANG Jie, GAO Qinhua, PAN Miao, et al. Device-free wireless sensing: Challenges, opportunities, and applications[J]. IEEE Network, 2018, 32(2): 132–137. doi: 10.1109/MNET.2017.1700133 WANG Ju, FANG Dingyi, and YANG Zhe. E-HIPA: An energy-efficient framework for high-precision multi-target adaptive device-free localization[J]. IEEE Transactions on Mobile Computing, 2017, 16(3): 716–729. doi: 10.1109/TMC.2016.2567396 TALAMPAS M C R and LOW K S. A geometric filter algorithm for robust device-free localization in wireless networks[J]. IEEE Transactions on Industrial Informatics, 2016, 12(5): 1670–1678. doi: 10.1109/TII.2015.2433211 KHALAJMEHRABADI A, GATSIS N, and AKOPIAN D. Modern WLAN fingerprinting indoor positioning methods and deployment challenges[J]. IEEE Communications Surveys & Tutorials, 2017, 19(3): 1974–2002. doi: 10.1109/COMST.2017.2671454 WANG Qinghua, YIGITLER H, JANTTI R, et al. Localizing multiple objects using radio tomographic imaging technology[J]. IEEE Transactions on Vehicular Technology, 2016, 65(5): 3641–3656. doi: 10.1109/TVT.2015.2432038 CANDES E J and WAKIN M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21–30. doi: 10.1109/MSP.2007.914731 WANG Ju, FANG Dingyi, CHEN Xiaojing, et al. LCS: Compressive sensing based device-free localization for multiple targets in sensor networks[C]. Proceeding of the IEEE INFOCOM 2013, Turin, 2013: 14–19. MAGER B, LUNDRIGAN P, and PATWARI N. Fingerprint-based device-free localization performance in changing environments[J]. IEEE Journal on Selected Areas in Communications, 2015, 33(11): 2429–2438. doi: 10.1109/JSAC.2015.2430515 YU Dongping, GUO Yan, LI Ning, et al. Dictionary refinement for compressive sensing based device-free localization via the variational EM algorithm[J]. IEEE Access, 2016, 4: 9743–9757. doi: 10.1109/ACCESS.2017.2649540 YANG Zheng, ZHOU Zimu, and LIU Yunhao. From RSSI to CSI: Indoor localization via channel response[J]. ACM Computing Surveys, 2013, 46(2): 1–32. doi: 10.1145/2543581.2543592 GAO Qinhua, WANG Jie, MA Xiaorui, et al. CSI-based device-free wireless localization and activity recognition using radio image features[J]. IEEE Transactions on Vehicular Technology, 2017, 66(11): 10346–10356. doi: 10.1109/TVT.2017.2737553 LEI Qian, ZHANG Haijian, SUN Hong, et al. Fingerprint-based device-free localization in changing environments using enhanced channel selection and logistic regression[J]. IEEE Access, 2018, 6: 2569–2577. doi: 10.1109/ACCESS.2017.2784387 WANG Jie, GAO Qinhua, PAN Miao, et al. Towards accurate device-free wireless localization with a saddle surface model[J]. IEEE Transactions on Vehicular Technology, 2016, 65(8): 6665–6677. doi: 10.1109/TVT.2015.2476495 WIPF D P and RAO B D. An empirical Bayesian strategy for solving the simultaneous sparse approximation problem[J]. IEEE Transactions on Signal Processing, 2007, 55(7): 3704–3716. doi: 10.1109/TSP.2007.894265 SAVAZZI S, NICOLI M, CARMINATI F, et al. A Bayesian approach to device-free localization: Modeling and experimental assessment[J]. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(1): 16–29. doi: 10.1109/JSTSP.2013.2286772 JI Shihao, XUE Ya, and CARIN L. Bayesian compressive sensing[J]. IEEE Transactions on Signal Processing, 2008, 56(6): 2346–2356. doi: 10.1109/TSP.2007.914345 -