一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于多維測(cè)量信息的壓縮感知多目標(biāo)無(wú)源被動(dòng)定位算法

余東平 郭艷 李寧 劉杰 楊思星

余東平, 郭艷, 李寧, 劉杰, 楊思星. 基于多維測(cè)量信息的壓縮感知多目標(biāo)無(wú)源被動(dòng)定位算法[J]. 電子與信息學(xué)報(bào), 2019, 41(2): 440-446. doi: 10.11999/JEIT180333
引用本文: 余東平, 郭艷, 李寧, 劉杰, 楊思星. 基于多維測(cè)量信息的壓縮感知多目標(biāo)無(wú)源被動(dòng)定位算法[J]. 電子與信息學(xué)報(bào), 2019, 41(2): 440-446. doi: 10.11999/JEIT180333
Dongping YU, Yan GUO, Ning LI, Jie LIU, Sixing YANG. Compressive Sensing Based Multi-target Device-free Passive Localization Algorithm Using Multidimensional Measurement Information[J]. Journal of Electronics & Information Technology, 2019, 41(2): 440-446. doi: 10.11999/JEIT180333
Citation: Dongping YU, Yan GUO, Ning LI, Jie LIU, Sixing YANG. Compressive Sensing Based Multi-target Device-free Passive Localization Algorithm Using Multidimensional Measurement Information[J]. Journal of Electronics & Information Technology, 2019, 41(2): 440-446. doi: 10.11999/JEIT180333

基于多維測(cè)量信息的壓縮感知多目標(biāo)無(wú)源被動(dòng)定位算法

doi: 10.11999/JEIT180333
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(61871400, 61571463),江蘇省自然科學(xué)基金(BK20171401)
詳細(xì)信息
    作者簡(jiǎn)介:

    余東平:男,1989年生,博士生,研究方向?yàn)樾盘?hào)處理、無(wú)線傳感器網(wǎng)絡(luò)定位

    郭艷:女,1971年生,教授,博士生導(dǎo)師,研究方向?yàn)樾盘?hào)處理、壓縮感知以及波束形成

    李寧:男,1967年生,副教授,研究方向?yàn)檎J(rèn)知無(wú)線電、自組織網(wǎng)

    楊思星:女,1992年生,博士生,研究方向?yàn)樾盘?hào)處理、無(wú)源目標(biāo)定位

    通訊作者:

    郭艷 guoyan_1029@sina.com

  • 中圖分類號(hào): TN911.7

Compressive Sensing Based Multi-target Device-free Passive Localization Algorithm Using Multidimensional Measurement Information

Funds: The National Natural Science Foundation of China (61871400, 61571463), The Natural Science Foundation of Jiangsu Province (BK20171401)
  • 摘要:

    無(wú)源被動(dòng)定位是入侵者檢測(cè)、環(huán)境監(jiān)測(cè)以及智能交通等應(yīng)用的關(guān)鍵問(wèn)題之一?,F(xiàn)有的無(wú)源被動(dòng)定位方法可通過(guò)信道狀態(tài)信息獲取多個(gè)維度上的測(cè)量信息,但是現(xiàn)有方案未能充分挖掘多個(gè)信道上的頻率分集以提高定位性能。該文提出一種基于多維測(cè)量信息的壓縮感知多目標(biāo)無(wú)源被動(dòng)定位算法,在壓縮感知框架下利用多維測(cè)量信息的頻率分集提高定位精度和魯棒性。根據(jù)鞍面模型建立無(wú)源字典,將多目標(biāo)無(wú)源被動(dòng)定位問(wèn)題建模成多測(cè)量向量聯(lián)合稀疏恢復(fù)問(wèn)題,并利用多維稀疏貝葉斯學(xué)習(xí)算法估計(jì)目標(biāo)位置向量。仿真結(jié)果表明,該算法能有效利用多維測(cè)量信息提高定位性能。

  • 圖  1  基于壓縮感知的多目標(biāo)無(wú)源被動(dòng)定位基本場(chǎng)景

    圖  2  算法迭代次數(shù)對(duì)定位性能的影響

    圖  3  子信道數(shù)對(duì)定位性能的影響

    圖  4  目標(biāo)個(gè)數(shù)與平均定位誤差的關(guān)系

    圖  5  信噪比與平均定位誤差的關(guān)系

    表  1  聯(lián)合稀疏恢復(fù)算法

     (1) 令${\gamma _{{\rm{th}}}} = {10^{ - 3}}$, ${\tau _{\max }} = {10^3}$, ${\eta _{{\rm{th}}}} = - 10\ {\rm{dB}}$, $\gamma = \tau = 0$。
     (2) while ($\gamma \ge {\gamma _{{\rm{th}}}}$或$\tau \le {\tau _{\max }}$) do
     (3)   根據(jù)式(16)和式(17),計(jì)算${{Σ}}$和${{Π}}$。
     (4)   根據(jù)式(19)和式(20),更新參數(shù)${\alpha _n}$和${\sigma ^2}$。
     (5)   令$\gamma \leftarrow \parallel{Y} - {{Φ}}{{Π}}\parallel $, $\tau \leftarrow \tau + 1$。
     (6) end while
     (7) 選擇使$\left\| {{{{y}}^f} - {{Φ}}{{{Π}} _{ \cdot f}}} \right\|$取得最小值的子信道$\hat f$。
     (8) $\forall n \in \left\{ {1,2,·\!·\!·,N} \right\}$,若$20\lg ({{{Π}} _{nf}}/\mathop {\max }\limits_i |{{{Π}} _{i\hat f}}|) < {\eta _{{\rm{th}}}}$,則${{{Π}} _{n\hat f}} = 0$。
     (9) 令恢復(fù)的位置向量$\hat {{θ}} = {{{Π}} _{ \cdot \hat f}}$,目標(biāo)個(gè)數(shù)${\widehat K} = |\hat {{θ}}|$。
    下載: 導(dǎo)出CSV

    表  2  平均定位誤差與定位均方根誤差的比較

    定位算法OMPBPGMPBCSVEM自有算法($F = 5$)自有算法($F = 10$)自有算法($F = 20$)
    平均定位誤差3.20281.30282.17950.89550.61960.46310.27440.2584
    定位均方根誤差3.38011.57352.45431.58381.00360.83920.67200.4738
    下載: 導(dǎo)出CSV
  • LIU Dawei, SHENG Bin, HOU Fen, et al. From wireless positioning to mobile positioning: An overview of recent advances[J]. IEEE Systems Journal, 2014, 8(4): 1249–1259. doi: 10.1109/JSYST.2013.2295136
    馮奇, 曲長(zhǎng)文, 周強(qiáng). 多運(yùn)動(dòng)站異步觀測(cè)條件下的直接定位算法[J]. 電子與信息學(xué)報(bào), 2017, 39(2): 417–422. doi: 10.11999/JEIT160314

    FENG Qi, QU Changwen, and ZHOU Qiang. Direct position determination using asynchronous observations of multiple moving sensors[J]. Journal of Electronics &Information Technology, 2017, 39(2): 417–422. doi: 10.11999/JEIT160314
    孫保明, 郭艷, 李寧, 等. 無(wú)線傳感器網(wǎng)絡(luò)中基于壓縮感知的動(dòng)態(tài)目標(biāo)定位算法[J]. 電子與信息學(xué)報(bào), 2016, 38(8): 1858–1864. doi: 10.11999/JEIT151203

    SUN Baoming, GUO Yan, LI Ning, et al. Mobile target localization algorithm using compressive sensing in wireless sensor networks[J]. Journal of Electronics &Information Technology, 2016, 38(8): 1858–1864. doi: 10.11999/JEIT151203
    YOUSSEF M, MAH M, and AGRAWALA A. Challenges: Device-free passive localization for wireless environments[C]. Proceedings of the ACM MobiCom’07, Montreal, 2007: 222–229.
    ZHANG Dian, MA Jian, CHEN Quanbin, et al. An RF-based system for tracking transceiver-free objects[C]. Proceedings of the 5th IEEE International Conference on Pervasive Computing and Communications (PerCom’07), White Plains, 2007: 135–144.
    WANG Jie, GAO Qinhua, PAN Miao, et al. Device-free wireless sensing: Challenges, opportunities, and applications[J]. IEEE Network, 2018, 32(2): 132–137. doi: 10.1109/MNET.2017.1700133
    WANG Ju, FANG Dingyi, and YANG Zhe. E-HIPA: An energy-efficient framework for high-precision multi-target adaptive device-free localization[J]. IEEE Transactions on Mobile Computing, 2017, 16(3): 716–729. doi: 10.1109/TMC.2016.2567396
    TALAMPAS M C R and LOW K S. A geometric filter algorithm for robust device-free localization in wireless networks[J]. IEEE Transactions on Industrial Informatics, 2016, 12(5): 1670–1678. doi: 10.1109/TII.2015.2433211
    KHALAJMEHRABADI A, GATSIS N, and AKOPIAN D. Modern WLAN fingerprinting indoor positioning methods and deployment challenges[J]. IEEE Communications Surveys & Tutorials, 2017, 19(3): 1974–2002. doi: 10.1109/COMST.2017.2671454
    WANG Qinghua, YIGITLER H, JANTTI R, et al. Localizing multiple objects using radio tomographic imaging technology[J]. IEEE Transactions on Vehicular Technology, 2016, 65(5): 3641–3656. doi: 10.1109/TVT.2015.2432038
    CANDES E J and WAKIN M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21–30. doi: 10.1109/MSP.2007.914731
    WANG Ju, FANG Dingyi, CHEN Xiaojing, et al. LCS: Compressive sensing based device-free localization for multiple targets in sensor networks[C]. Proceeding of the IEEE INFOCOM 2013, Turin, 2013: 14–19.
    MAGER B, LUNDRIGAN P, and PATWARI N. Fingerprint-based device-free localization performance in changing environments[J]. IEEE Journal on Selected Areas in Communications, 2015, 33(11): 2429–2438. doi: 10.1109/JSAC.2015.2430515
    YU Dongping, GUO Yan, LI Ning, et al. Dictionary refinement for compressive sensing based device-free localization via the variational EM algorithm[J]. IEEE Access, 2016, 4: 9743–9757. doi: 10.1109/ACCESS.2017.2649540
    YANG Zheng, ZHOU Zimu, and LIU Yunhao. From RSSI to CSI: Indoor localization via channel response[J]. ACM Computing Surveys, 2013, 46(2): 1–32. doi: 10.1145/2543581.2543592
    GAO Qinhua, WANG Jie, MA Xiaorui, et al. CSI-based device-free wireless localization and activity recognition using radio image features[J]. IEEE Transactions on Vehicular Technology, 2017, 66(11): 10346–10356. doi: 10.1109/TVT.2017.2737553
    LEI Qian, ZHANG Haijian, SUN Hong, et al. Fingerprint-based device-free localization in changing environments using enhanced channel selection and logistic regression[J]. IEEE Access, 2018, 6: 2569–2577. doi: 10.1109/ACCESS.2017.2784387
    WANG Jie, GAO Qinhua, PAN Miao, et al. Towards accurate device-free wireless localization with a saddle surface model[J]. IEEE Transactions on Vehicular Technology, 2016, 65(8): 6665–6677. doi: 10.1109/TVT.2015.2476495
    WIPF D P and RAO B D. An empirical Bayesian strategy for solving the simultaneous sparse approximation problem[J]. IEEE Transactions on Signal Processing, 2007, 55(7): 3704–3716. doi: 10.1109/TSP.2007.894265
    SAVAZZI S, NICOLI M, CARMINATI F, et al. A Bayesian approach to device-free localization: Modeling and experimental assessment[J]. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(1): 16–29. doi: 10.1109/JSTSP.2013.2286772
    JI Shihao, XUE Ya, and CARIN L. Bayesian compressive sensing[J]. IEEE Transactions on Signal Processing, 2008, 56(6): 2346–2356. doi: 10.1109/TSP.2007.914345
  • 加載中
圖(5) / 表(2)
計(jì)量
  • 文章訪問(wèn)數(shù):  1781
  • HTML全文瀏覽量:  640
  • PDF下載量:  93
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2018-04-11
  • 修回日期:  2018-11-01
  • 網(wǎng)絡(luò)出版日期:  2018-11-09
  • 刊出日期:  2019-02-01

目錄

    /

    返回文章
    返回