基于偽逆極坐標(biāo)傅里葉變換的快速ISAR方位定標(biāo)
doi: 10.11999/JEIT180299
-
1.
重慶大學(xué)通信與測控中心 ??重慶 ??400044
-
2.
上海衛(wèi)星工程研究所 ??上海 ??200240
-
3.
重慶大學(xué)通信工程學(xué)院 ??重慶 ??400044
Fast Cross-range Scaling for ISAR Imaging Based on Pseudo Polar Fourier Transform
-
1.
Center of Communication and Tracking Telemetering Command, Chongqing University, Chongqing 400044, China
-
2.
Shanghai Satellite Engineering Research Institute, Shanghai 200240, China
-
3.
College of Communication Engineering, Chongqing University, Chongqing 400044, China
-
摘要:
在逆合成孔徑雷達(dá)(ISAR)成像中,由距離多普勒或時(shí)頻分析方法得到的ISAR圖像方位向僅是目標(biāo)的多普勒頻率分布,不能反映目標(biāo)的真實(shí)形狀,需對(duì)ISAR圖像進(jìn)行方位定標(biāo)。該文提出一種快速的ISAR方位定標(biāo)方法來估計(jì)目標(biāo)的旋轉(zhuǎn)角速度(RAV)。首先,該方法利用高效的偽逆極坐標(biāo)快速傅里葉變換把兩幅不同時(shí)刻ISAR圖像的旋轉(zhuǎn)運(yùn)動(dòng)轉(zhuǎn)化為沿極角的平移運(yùn)動(dòng)。然后,在極坐標(biāo)域定義了一種新的積分相關(guān)代價(jià)函數(shù)來粗估目標(biāo)的RAV。最后,通過采用二分法估計(jì)得到最優(yōu)的RAV,進(jìn)而實(shí)現(xiàn)ISAR方位定標(biāo)。相比于現(xiàn)有方位定標(biāo)算法,所提方法避免了插值操作帶來的精度損失和高計(jì)算復(fù)雜度問題。計(jì)算機(jī)仿真和實(shí)測數(shù)據(jù)實(shí)驗(yàn)結(jié)果證明了所提方法的有效性。
-
關(guān)鍵詞:
- 逆合成孔徑雷達(dá) /
- 旋轉(zhuǎn)角速度 /
- 偽逆極坐標(biāo)快速傅里葉變換 /
- 二分法
Abstract:For the Inverse Synthetic Aperture Radar (ISAR) imaging, the ISAR image obtained by the Range-Doppler (RD) or time-frequency analysis methods can not display the target's real shape due to its azimuth relating to the target Doppler frequency, thus the cross-range scaling is required for ISAR image. In this paper, a fast cross-range scaling method for ISAR is proposed to estimate the Rotational Angular Velocity (RAV). Firstly, the proposed method utilizes efficient Pseudo Polar Fast Fourier Transform (PPFFT) to transform the rotational motion of two ISAR images from two different instant time into translation in the polar angle direction. Then, a new cost function called integrated correction is defined to obtain the RAV coarse estimation. Finally, the optimal RAV can be estimated using the Bisection method to realize the cross-range scaling. Compared with the available algorithms, the proposed method avoids the problems of precision loss and high computational complexity caused by interpolation operation. The results of computer simulation and real data experiments are provided to demonstrate the validity of the proposed method.
-
表 1 雷達(dá)參數(shù)和目標(biāo)運(yùn)動(dòng)模型
參數(shù) 數(shù)值 載波頻率 5.6 GHz 波長 0.0536 m 傳輸信號(hào)帶寬 400 MHz 距離采樣頻率 512 MHz 脈沖重復(fù)頻率 150 Hz 有效回波脈沖 600 旋轉(zhuǎn)角速度 0.0436 rad/s 下載: 導(dǎo)出CSV
表 2 兩種方法運(yùn)行時(shí)間對(duì)比(s)
方法名稱 粗估所用時(shí)間 定標(biāo)總時(shí)間 文獻(xiàn)[11]方法 107.224 958.659 本文方法 12.203 96.712 下載: 導(dǎo)出CSV
-
XU Gang, XING Mengdao, XIA Xianggen, et al. 3D geometry and motion estimations of maneuvering targets for interferometric ISAR with sparse aperture[J]. IEEE Transactions on Geoscience & Remote Sensing, 2017, 25(5): 2005–2020. doi: 10.1109/TIP.2016.2535362 LI Dong, ZHAN Muyang, ZHANG Xinzheng, et al. ISAR imaging of nonuniformly rotating target based on the multicomponent CPS model under low SNR environment[J]. IEEE Transactions on Aerospace & Electronic Systems, 2017, 53(3): 1119–1135. doi: 10.1109/TAES.2017.2667538 李璽, 顧紅, 劉國歲. ISAR成像中轉(zhuǎn)角估計(jì)的新方法[J]. 電子學(xué)報(bào), 2000, 28(6): 44–47. doi: 10.3321/j.issn:0372-2112.2000.06.012LI Xi, GU Hong, and LIU Guosui. A method estimating the rotation angle in ISAR imaging[J]. Acta Electronica Sinica, 2000, 28(6): 44–47. doi: 10.3321/j.issn:0372-2112.2000.06.012 WANG Yong and JIANG Yicheng. A novel algorithm for estimating the rotation angle in ISAR imaging[J]. IEEE Geoscience & Remote Sensing Letters, 2008, 5(4): 608–609. doi: 10.1109/LGRS.2008.2000955 MARTORELLA M. Novel approach for ISAR image cross-range scaling[J]. IEEE Transactions on Aerospace & Electronic Systems, 2008, 44(1): 281–294. doi: 10.1109/TAES.2008.4517004 WANG Xin, ZHANG Min, and ZHAO Jia. Efficient cross-range scaling method via two-dimensional unitary ESPRIT scattering center extraction algorithm[J]. IEEE Geoscience & Remote Sensing Letters, 2017, 12(5): 928–932. doi: 10.1109/LGRS.2014.2367521 XU Zhiwei, ZHANG Lei, and XING Mengdao. Precise cross-range scaling for ISAR images using feature registration[J]. IEEE Geoscience & Remote Sensing Letters, 2014, 11(10): 1792–1796. doi: 10.1109/LGRS.2014.2309604 SHENG Jialian, XING Mengdao, ZHANG Lei, et al. ISAR cross-range scaling by using sharpness maximization[J]. IEEE Geoscience & Remote Sensing Letters, 2015, 12(1): 165–169. doi: 10.1109/LGRS.2014.2330625 陳倩倩, 徐剛, 李亞超, 等. 短孔徑ISAR方位定標(biāo)[J]. 電子與信息學(xué)報(bào), 2013, 35(8): 1854–1861. doi: 10.3724/SP.J.1146.2012.01252CHEN Qianqian, XU Gang, LI Yachao, et al. Cross-range scaling of short aperture ISAR[J]. Journal of Electronics &Information Technology, 2013, 35(8): 1854–1861. doi: 10.3724/SP.J.1146.2012.01252 YEH Chunmao, XU Jia, PENG Yingning, et al. Cross-range scaling for ISAR based on image rotation correlation[J]. IEEE Geoscience & Remote Sensing Letters, 2009, 6(3): 597–601. doi: 10.1109/LGRS.2009.2021990 PARK S H, KIM H T, and KIM K T. Cross-range scaling algorithm for ISAR images using 2-D fourier transform and polar mapping[J]. IEEE Transactions on Geoscience & Remote Sensing, 2011, 49(2): 868–877. doi: 10.1109/TGRS.2010.2060731 AVERBUCH A, COIFMAN R R, DONOHO D L, et al. A framework for discrete integral transformations I-the pseudopolar fourier transform[J]. SIAM Journal on Scientific Computing, 2014, 30(2): 764–784. KELLER Y, SHKOLNISKY Y, and AVERBUCH A. The angular difference function and its application to image registration[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2005, 27(6): 969–976. doi: 10.1109/TPAMI.2005.128 XING Hao, MOU Yuting, FU Minyue, et al. Distributed bisection method for economic power dispatch in smart grid[J]. IEEE Transactions on Power Systems, 2016, 30(6): 3024–3035. doi: 10.1109/TPWRS.2014.2376935 LI Dong, LIU Hongqing, LIAO Yong, et al. A novel helicopter-borne rotating SAR imaging model and algorithm based on inverse Chirp-Z transform using frequency-modulated continuous wave[J]. IEEE Geoscience & Remote Sensing Letters, 2016, 12(8): 1625–1629. doi: 10.1109/LGRS.2015.2416437 -