一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言?xún)?nèi)容
驗(yàn)證碼

基于Stackelberg博弈的虛擬化無(wú)線傳感網(wǎng)絡(luò)資源分配策略

王汝言 李宏娟 吳大鵬

王汝言, 李宏娟, 吳大鵬. 基于Stackelberg博弈的虛擬化無(wú)線傳感網(wǎng)絡(luò)資源分配策略[J]. 電子與信息學(xué)報(bào), 2019, 41(2): 377-384. doi: 10.11999/JEIT180277
引用本文: 王汝言, 李宏娟, 吳大鵬. 基于Stackelberg博弈的虛擬化無(wú)線傳感網(wǎng)絡(luò)資源分配策略[J]. 電子與信息學(xué)報(bào), 2019, 41(2): 377-384. doi: 10.11999/JEIT180277
Ruyan WANG, Hongjuan LI, Dapeng WU. Stackelberg Game-based Resource Allocation Strategy in Virtualized Wireless Sensor Network[J]. Journal of Electronics & Information Technology, 2019, 41(2): 377-384. doi: 10.11999/JEIT180277
Citation: Ruyan WANG, Hongjuan LI, Dapeng WU. Stackelberg Game-based Resource Allocation Strategy in Virtualized Wireless Sensor Network[J]. Journal of Electronics & Information Technology, 2019, 41(2): 377-384. doi: 10.11999/JEIT180277

基于Stackelberg博弈的虛擬化無(wú)線傳感網(wǎng)絡(luò)資源分配策略

doi: 10.11999/JEIT180277
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(61771082),重慶市高校創(chuàng)新團(tuán)隊(duì)建設(shè)計(jì)劃資助項(xiàng)目(CXTDX201601020)
詳細(xì)信息
    作者簡(jiǎn)介:

    王汝言:男,1969年生,教授,博士,研究方向?yàn)榉涸诰W(wǎng)絡(luò)、多媒體信息處理等

    李宏娟:女,1993年生,碩士生,研究方向?yàn)樘摂M化、無(wú)線傳感網(wǎng)絡(luò)

    吳大鵬:男,1979年生,教授,博士,研究方向?yàn)榉涸跓o(wú)線網(wǎng)絡(luò)、無(wú)線網(wǎng)絡(luò)服務(wù)質(zhì)量控制等

    通訊作者:

    李宏娟 ilihj@foxmail.com

  • 中圖分類(lèi)號(hào): TP393

Stackelberg Game-based Resource Allocation Strategy in Virtualized Wireless Sensor Network

Funds: The National Natural Science Foundation of China (61771082), The Chongqing Funded Project of Chongqing University Innovation Team Construction Plan (CXTDX201601020)
  • 摘要:

    虛擬化技術(shù)可有效緩解當(dāng)前無(wú)線傳感網(wǎng)絡(luò)(WSN)中資源利用率較低、服務(wù)不靈活的問(wèn)題。針對(duì)虛擬化WSN中的資源競(jìng)爭(zhēng)問(wèn)題,該文提出一種基于Stackelberg博弈的多任務(wù)資源分配策略。依據(jù)所承載業(yè)務(wù)的不同服務(wù)質(zhì)量(QoS)需求,量化多個(gè)虛擬傳感網(wǎng)絡(luò)請(qǐng)求(VSNRs)的重要程度,進(jìn)而,利用分布式迭代方法,獲取WSN的最優(yōu)價(jià)格策略和VSNRs的最優(yōu)資源需求量,最后,根據(jù)納什均衡所確定的最優(yōu)價(jià)格、最優(yōu)資源分配量,對(duì)多個(gè)VSNRs分配資源。仿真結(jié)果表明,所提策略不僅能滿(mǎn)足用戶(hù)的多樣化需求,而且提升了節(jié)點(diǎn)和鏈路資源利用率。

  • 圖  1  虛擬化無(wú)線傳感網(wǎng)絡(luò)示意圖

    圖  2  虛擬化前后節(jié)點(diǎn)緩存資源利用率

    圖  3  虛擬化前后鏈路帶寬資源利用率

    圖  4  不同a值時(shí)VSNSP效用函數(shù)在迭代過(guò)程中的變化

    圖  5  WSNInP與VSNSPs間的納什均衡

    圖  6  不同任務(wù)數(shù)產(chǎn)生的收益

    圖  7  不同任務(wù)數(shù)的帶寬利用率

    表  1  仿真參數(shù)設(shè)置

    參數(shù)設(shè)定參考數(shù)值
    仿真區(qū)域(m2)50×50
    節(jié)點(diǎn)數(shù)量(個(gè))55
    節(jié)點(diǎn)處理速度(bit/s)16~32
    節(jié)點(diǎn)存儲(chǔ)能力(kb)4~15
    節(jié)點(diǎn)能量(J)2~4
    鏈路帶寬(kb/s)5~30
    用戶(hù)體驗(yàn)常量1或2
    VSNR資源需求策略調(diào)節(jié)步長(zhǎng)0.1
    WSN價(jià)格策略調(diào)節(jié)步長(zhǎng)0.1
    最大迭代次數(shù)/次200
    下載: 導(dǎo)出CSV
  • EZDIANI S, ACHARYYA I S, SIVAKUMAR S, et al. Wireless sensor network softwarization: Towards WSN adaptive QoS[J]. IEEE Internet of Things Journal, 2017, 4(5): 1517–1527. doi: 10.1109/JIOT.2017.2740423
    LIAO Yizheng, MOLLINEAUX M, HSU R, et al. SnowFort: An open source wireless sensor network for data analytics in infrastructure and environmental monitoring[J]. IEEE Sensors Journal, 2014, 14(12): 4253–4263. doi: 10.1109/JSEN.2014.2358253
    HU Xiaoya, YANG Liuqing, and XIONG Wei. A novel wireless sensor network frame for urban transportation[J]. IEEE Internet of Things Journal, 2015, 2(6): 586–595. doi: 10.1109/JIOT.2015.2475639
    ALAIAD A and ZHOU Lina. Patients’ adoption of WSN-Based smart home healthcare systems: an integrated model of facilitators and barriers[J]. IEEE Transactions on Professional Communication, 2017, 60(1): 4–23. doi: 10.1109/TPC.2016.2632822
    PARK P, MARCO P D, and JOHANSSON K H. Cross-layer optimization for industrial control applications using wireless sensor and actuator mesh networks[J]. IEEE Transactions on Industrial Electronics, 2017, 64(4): 3250–3259. doi: 10.1109/TIE.2016.2631530
    KHAN I, BELQASMI F, GLITHO R, et al. Wireless sensor network virtualization: Early architecture research perspectives[J]. IEEE Network, 2015, 29(3): 104–112. doi: 10.1109/MNET.2015.7113233
    KHAN I, BELQASMI F, GLITHO R, et al. Wireless sensor network virtualization: A survey[J]. IEEE Communications Surveys & Tutorials, 2016, 18(1): 553–576. doi: 10.1109/COMST.2015.2412971
    GUO Lei, NING Zhaolong, SONG Qingyang, et al. A QoS-oriented high-efficiency resource allocation scheme in wireless multimedia sensor networks[J]. IEEE Sensors Journal, 2017, 17(5): 1538–1548. doi: 10.1109/JSEN.2016.2645709
    DELGADO C, BOUSNINA S, CESANA M, et al. On optimal resource allocation in virtual sensor networks[J]. Ad Hoc Networks, 2016, 50(C): 23–40. doi: 10.1016/j.adhoc.2016.04.004
    DELGADO C, CANALES M, ORTIN J, et al. Joint application admission control and network slicing in virtual sensor networks[J]. IEEE Internet of Things Journal, 2017, 5(1): 28–43. doi: 10.1109/JIOT.2017.2769446
    OBELE B O, IFTIKHAR M, MANIPORNSUT S, et al. Analysis of the behavior of self-similar traffic in a QoS-aware architecture for integrating WiMAX and GEPON[J]. Journal of Optical Communication and Network, 2009, 1(4): 259–273. doi: 10.1364/JOCN.1.000259
    MILAN G, JUAN E S, and JAMETT M. A simple estimator of the Hurst exponent for self-similar traffic flows[J]. IEEE Latin America Transactions, 2015, 12(8): 1349–1354. doi: 10.1109/TLA.2014.7014500
    TRAN T D and LE L B. Stackelberg game approach for wireless virtualization design in wireless networks[C]. 2017 IEEE International Conference on Communications (ICC), Paris, France, 2017: 1–6.
    WANG Cong, WANG Cuirong, and YUAN Ying. Game based dynamical bandwidth allocation model for virtual networks[C]. 2009 First International Conference on Information Science and Engineering, Nanjing, China, 2009: 1745–1747.
    LUONG N C, HOANG D T, WANG Ping, et al. Data collection and wireless communication in Internet of Things (IoT) using economic analysis and pricing models: A survey[J]. IEEE Communications Surveys & Tutorials, 2016, 18(4): 2546–2590. doi: 10.1109/COMST.2016.2582841
    AL-ZAHRANI A Y and YU F R. An energy-efficient resource allocation and interference management scheme in green heterogeneous networks using game theory[J]. IEEE Transactions on Vehicular Technology, 2016, 65(7): 5384–5396. doi: 10.1109/TVT.2015.2464322
    XU Qichao, SU Zhou, and GUO Song. A game theoretical incentive scheme for relay selection services in mobile social networks[J]. IEEE Transactions on Vehicular Technology, 2016, 65(8): 6692–6702. doi: 10.1109/TVT.2015.2472289
    GHOSH A, COTTATELLUCCI L, and ALTMAN E. Normalized Nash equilibrium for power allocation in cognitive radio Networks[J]. IEEE Transactions on Cognitive Communications and Networking, 2015, 1(1): 86–99. doi: 10.1109/TCCN.2015.2496578
    RAO M S S and SOMAN S A. Marginal pricing of transmission services using min-max fairness policy[J]. IEEE Transactions on Power Systems, 2015, 30(2): 573–584. doi: 10.1109/TPWRS.2014.2331424
    ZHANG Yueyue, ZHU Yaping, YAN Feng, et al. Energy-efficient radio resource allocation in software-defined wireless sensor networks[J]. IET Communications, 2018, 12(3): 349–358. doi: 10.1049/iet-com.2017.0937
  • 加載中
圖(7) / 表(1)
計(jì)量
  • 文章訪問(wèn)數(shù):  1765
  • HTML全文瀏覽量:  1117
  • PDF下載量:  133
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2018-03-23
  • 修回日期:  2018-07-25
  • 網(wǎng)絡(luò)出版日期:  2018-08-06
  • 刊出日期:  2019-02-01

目錄

    /

    返回文章
    返回