一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于卷積神經(jīng)網(wǎng)絡(luò)與全局優(yōu)化的協(xié)同顯著性檢測

吳澤民 王軍 胡磊 田暢 曾明勇 杜麟

吳澤民, 王軍, 胡磊, 田暢, 曾明勇, 杜麟. 基于卷積神經(jīng)網(wǎng)絡(luò)與全局優(yōu)化的協(xié)同顯著性檢測[J]. 電子與信息學(xué)報(bào), 2018, 40(12): 2896-2904. doi: 10.11999/JEIT180241
引用本文: 吳澤民, 王軍, 胡磊, 田暢, 曾明勇, 杜麟. 基于卷積神經(jīng)網(wǎng)絡(luò)與全局優(yōu)化的協(xié)同顯著性檢測[J]. 電子與信息學(xué)報(bào), 2018, 40(12): 2896-2904. doi: 10.11999/JEIT180241
Zemin WU, Jun WANG, Lei HU, Chang TIAN, Mingyong ZENG, Lin DU. Co-saliency Detection Based on Convolutional Neural Network and Global Optimization[J]. Journal of Electronics & Information Technology, 2018, 40(12): 2896-2904. doi: 10.11999/JEIT180241
Citation: Zemin WU, Jun WANG, Lei HU, Chang TIAN, Mingyong ZENG, Lin DU. Co-saliency Detection Based on Convolutional Neural Network and Global Optimization[J]. Journal of Electronics & Information Technology, 2018, 40(12): 2896-2904. doi: 10.11999/JEIT180241

基于卷積神經(jīng)網(wǎng)絡(luò)與全局優(yōu)化的協(xié)同顯著性檢測

doi: 10.11999/JEIT180241
詳細(xì)信息
    作者簡介:

    吳澤民:男,1973年生,副教授,碩士生導(dǎo)師,研究方向?yàn)閳D像分析、數(shù)據(jù)融合

    王軍:男,1995年生,碩士生,研究方向?yàn)樯疃葘W(xué)習(xí)、圖像與視頻的顯著度研究

    胡磊:男,1987年生,博士,研究方向?yàn)槟繕?biāo)跟蹤與識別、數(shù)據(jù)融合

    田暢:男,1963年生,教授,博士生導(dǎo)師,研究方向?yàn)閿?shù)據(jù)鏈技術(shù)、圖像視頻處理

    曾明勇:男,1988年生,博士生,研究方向?yàn)槟繕?biāo)檢測與識別

    杜麟:男,1990年生,博士生,研究方向?yàn)橐曨l編碼與視頻傳輸保障

    通訊作者:

    王軍  wangjun_ice@126.com

  • 中圖分類號: TP391.41

Co-saliency Detection Based on Convolutional Neural Network and Global Optimization

  • 摘要: 針對目前協(xié)同顯著性檢測問題中存在的協(xié)同性較差、誤匹配和復(fù)雜場景下檢測效果不佳等問題,該文提出一種基于卷積神經(jīng)網(wǎng)絡(luò)與全局優(yōu)化的協(xié)同顯著性檢測算法。首先基于VGG16Net構(gòu)建了全卷積結(jié)構(gòu)的顯著性檢測網(wǎng)絡(luò),該網(wǎng)絡(luò)能夠模擬人類視覺注意機(jī)制,從高級語義層次提取一幅圖像中的顯著性區(qū)域;然后在傳統(tǒng)單幅圖像顯著性優(yōu)化模型的基礎(chǔ)上構(gòu)造了全局協(xié)同顯著性優(yōu)化模型。該模型通過超像素匹配機(jī)制,實(shí)現(xiàn)當(dāng)前超像素塊顯著值在圖像內(nèi)與圖像間的傳播與共享,使得優(yōu)化后的顯著圖相對于初始顯著圖具有更好的協(xié)同性與一致性。最后,該文創(chuàng)新性地引入圖像間顯著性傳播約束因子來克服超像素誤匹配帶來的影響。在公開測試數(shù)據(jù)集上的實(shí)驗(yàn)結(jié)果表明,所提算法在檢測精度和檢測效率上優(yōu)于目前的主流算法,并具有較強(qiáng)的魯棒性。
  • 圖  1  顯著性檢測網(wǎng)絡(luò)結(jié)構(gòu)示意圖

    圖  2  本文算法每個(gè)步驟所生成的顯著圖對比

    圖  3  協(xié)同顯著性優(yōu)化示意圖

    圖  5  iCoSeg數(shù)據(jù)集上部分實(shí)驗(yàn)結(jié)果對比示例

    圖  4  ImgPair數(shù)據(jù)集上部分實(shí)驗(yàn)結(jié)果對比示例(GT表示真值圖)

    圖  6  本文算法在iCoSeg數(shù)據(jù)集上的量化分析(F-measure曲線圖)

    圖  8  本文算法與其他算法在兩大數(shù)據(jù)集上的F-measure曲線對比

    圖  7  本文算法與其他算法在兩大數(shù)據(jù)集上的P-R曲線對比

    表  1  不同算法在兩大數(shù)據(jù)庫上的測試結(jié)果對比

    算法 ImgPair iCoSeg
    AUC AF MAE AUC AF MAE
    SA 0.967 0.826 0.160 0.965 0.720 0.160
    HS 0.954 0.821 0.147 0.954 0.640 0.180
    CB-C 0.931 0.782 0.178 0.913 0.647 0.198
    CB-S 0.927 0.749 0.181 0.935 0.688 0.173
    ACM 0.880 0.719 0.197
    SM 0.879 0.724 0.166 0.621 0.580 0.234
    LDW 0.957 0.699 0.178
    IPIM 0.964 0.703 0.159
    本文CNN 0.958 0.811 0.098 0.932 0.761 0.081
    本文CNN+COOPT 0.981 0.904 0.075 0.962 0.848 0.056
    下載: 導(dǎo)出CSV

    表  2  不同協(xié)同顯著性算法平均運(yùn)算時(shí)間比較

    算法 CB-C SA SM 本文CNN 本文CNN+COOPT
    時(shí)間(s) 5.40 2.10 6.60 0.12 2.70
    處理器 CPU CPU CPU GPU CPU+GPU
    下載: 導(dǎo)出CSV
  • CHANG Kaiyueh, LIU Tyngluh, and LAI Shanghong. From co-saliency to co-segmentation: An efficient and fully unsupervised energy minimization model[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Colorado, USA, 2011: 2129–2136.
    JACOBS D E, DAN B G, and SHECHTMAN E. Co-saliency: Where people look when comparing images[C]. ACM Symposium on User Interface Software and Technology, New York, USA, 2010: 219–228.
    YE Linwei, LIU Zhi, ZHOU Xiaofeng, et al. Saliency detection via similar image retrieval[J]. IEEE Signal Processing Letters, 2016, 23(6): 838–842 doi: 10.1109/LSP.2016.2558489
    YE Linwei, LIU Zhi, LI Junhao, et al. Co-saliency detection via co-salient object discovery and recovery[J]. IEEE Signal Processing Letters, 2015, 22(11): 2073–2077 doi: 10.1109/LSP.2015.2458434
    LIU Zhi, ZOU Wenbin, and OLIVIER L M. Saliency tree: A novel saliency detection framework[J]. IEEE Transactions on Image Processing, 2014, 23(5): 1937–1952 doi: 10.1109/TIP.2014.2307434
    REN Jingru, ZHOU Xiaofei, LIU Zhi, et al. Saliency integration driven by similar images[J]. Journal of Visual Communication and Image Representation, 2018, 50: 227–236 doi: 10.1016/j.jvcir.2017.12.002
    LI Yijun, FU Keren, LIU Zhi, et al. Efficient saliency-model-guided visual co-saliency detection[J]. IEEE Signal Processing Letters, 2015, 22(5): 588–592 doi: 10.1109/LSP.2014.2364896
    FU Huazhu, CAO Xiaochun, and TU Zhuowen. Cluster-based co-saliency detection[J]. IEEE Transactions on Image Processing, 2013, 22(10): 3766–3778 doi: 10.1109/TIP.2013.2260166
    LIU Zhi, ZOU Wenbin, LI Lina, et al. Co-saliency detection based on hierarchical segmentation[J]. IEEE Signal Processing Letters, 2014, 21(1): 88–92 doi: 10.1109/LSP.2013.2292873
    ZHANG Zhaofeng, WU Zemin, JIANG Qingzhu, et al. Co-saliency detection based on superpixel matching and cellular automata[J]. KSII Transactions on Internet and Information Systems, 2017, 11(5): 2576–2589 doi: 10.3837/tiis.2017.05.015
    YANG Chuan, ZHANG Lihe, LU Huchuan, et al. Saliency detection via graph-based manifold ranking[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Portland, USA, 2013: 3166–3173.
    QIN Yao, LU Huchuan, XU Yiqun, et al. Saliency detection via cellular automata[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, USA, 2015: 110–119.
    ZHANG Dingwen, HAN Junwei, LI Chao, et al. Co-saliency detection via looking deep and wide[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 2994–3002.
    ZHANG Dingwen, MENG Deyu, HAN Junwei, et al. Co-saliency detection via a self-paced multiple-instance learning framework[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(5): 865–878 doi: 10.1109/TPAMI.2016.2567393
    WEI Lina, ZHAO Shanshan, BOURAHLA O E F, et al. Group-wise deep co-saliency detection[C]. Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, Melbourne, Australia, 2017: 3041–3047.
    SIMONYAN K, and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[OL]. Computer Science, 2014. arXiv: 1409.1556.
    LI Xi, ZHAO Liming, WEI Lina, et al. Deepsaliency: Multi-task deep neural network model for salient object detection[J]. IEEE Transactions on Image Processing, 2016, 25(8): 3919–3930 doi: 10.1109/TIP.2016.2579306
    JIA Yangqing, SHELHAMER E, DONAHUE J, et al. Caffe: Convolutional architecture for fast feature embedding [C]. Proceedings of the ACM International Conference on Multimedia, 2014: 675–678.
    CHENG Mingming, ZHANG Guoxin, NILOY J, et al. Global contrast based salient region detection[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Colorado Spring, USA, 2011: 409–416.
    ACHANTA R, SHAJI A, SMITH K, et al. Slic superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274–2282 doi: 10.1109/TPAMI.2012.120
    LU Song, MAHADEVAN V, and VASCONCELOS N. Learning optimal seeds for diffusion-based salient object detection[C]. IEEE Computer Vision and Pattern Recognition (CVPR), Columbus, USA, 2014: 2790–2797.
    LI Hongliang and NGAN K N. A co-saliency model of image pairs[J]. IEEE Transactions on Image Processing, 2011, 20(12): 3365–3375 doi: 10.1109/TIP.2011.2156803
    BATRA D, KOWDLE A, PARIKH D, et al. Interactively co-segmentating topically related images with intelligent scribble guidance[J]. International Journal of Computer Vision, 2011, 93(3): 273–292 doi: 10.1007/s11263-010-0415-x
    CAO Xiaochun, TAO Zhiqiang, ZHANG Bao, et al. Self-adaptively weighted co-saliency detection via rank constraint[J]. IEEE Transactions on Image Processing, 2014, 23(9): 4175–4186 doi: 10.1109/TIP.2014.2332399
    ZHANG Dingwen, HAN Junwei, HAN Jungong, et al. Co-saliency detection based on intra-saliency prior transfer and deep inter-saliency mining[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(6): 1163–1176 doi: 10.1109/TNNLS.2015.2495161
  • 加載中
圖(8) / 表(2)
計(jì)量
  • 文章訪問數(shù):  2520
  • HTML全文瀏覽量:  807
  • PDF下載量:  99
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2018-03-16
  • 修回日期:  2018-08-22
  • 網(wǎng)絡(luò)出版日期:  2018-08-31
  • 刊出日期:  2018-12-01

目錄

    /

    返回文章
    返回