無(wú)線(xiàn)供電混合多址接入網(wǎng)絡(luò)的資源分配
doi: 10.11999/JEIT180219
-
1.
廣東工業(yè)大學(xué)信息工程學(xué)院 ??廣州 ??510006
-
2.
廣州杰賽科技股份有限公司 ??廣州 ??510310
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(61571138);廣東省科技計(jì)劃(2017B 090909006, 2016B090904001);廣州市科技計(jì)劃(201803030028)
Resource Allocation for Wireless Powered Hybrid Multiple Access Networks
-
1.
School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China
-
2.
Guangzhou GCI Science & Technology Co., Ltd., Guangzhou 510310, China
Funds: The National Natural Science Foundation of China (61571138), The Science and Technology Plan Project of Guangdong Province (2017B090909006, 2016B090904001), The Science and Technology Plan Project of Guangzhou City (201803030028)
-
摘要: 無(wú)線(xiàn)供電技術(shù)是延長(zhǎng)無(wú)線(xiàn)網(wǎng)絡(luò)節(jié)點(diǎn)壽命的有效方案。該文研究一個(gè)由基站和多個(gè)分簇用戶(hù)組成的無(wú)線(xiàn)供電混合多址接入系統(tǒng)。系統(tǒng)的傳輸分為兩個(gè)階段。在第1階段,基站向用戶(hù)廣播能量;在第2階段,用戶(hù)向基站傳輸信息。用戶(hù)簇和用戶(hù)簇之間采用時(shí)分多址接入,分時(shí)傳輸;同一簇內(nèi)多個(gè)用戶(hù)采用非正交多址接入,同時(shí)傳輸。該文研究聯(lián)合優(yōu)化系統(tǒng)的各階段的傳輸時(shí)間、基站的發(fā)射功率、用戶(hù)的發(fā)射功率等資源,分別以?xún)?yōu)化網(wǎng)絡(luò)頻譜效率和用戶(hù)簇之間的公平性為目的,提出最大化網(wǎng)絡(luò)吞吐量和最大化用戶(hù)簇的最小吞吐量的聯(lián)合資源分配算法。研究結(jié)果表明所提的兩種算法分別能有效提高系統(tǒng)的頻譜效率和保證用戶(hù)簇之間的公平性。
-
關(guān)鍵詞:
- 無(wú)線(xiàn)供電通信網(wǎng)絡(luò) /
- 非正交多址接入 /
- 用戶(hù)簇 /
- 吞吐量 /
- 公平性
Abstract: Wireless powered technology is an effective way to extend the lifetime of wireless network nodes. A wireless powered hybrid multiple access system is studied that is consist of a base station and multiple users in clusters. The transmission of the system is divided into two phases. The base station broadcasts energy to the users in the first phase. The users transmit information to the base station in the second phase. The users among different clusters transmit in the time division multiple access manner, while the users in the same cluster transmit in the non-orthogonal multiple access manner. Joint phase time duration allocation and power allocation are investigated at the base station and the users in order to improve the spectrum efficiency and user fairness, respectively. Two algorithms are proposed, which maximize the system throughput and the minimum throughput of the clusters, respectively. Simulation results show that the two proposed algorithms can effectively increase spectral efficiency and guarantee fairness of user clusters, respectively. -
WU Qingqing, LI G Y, CHEN Wen, et al. An overview of sustainable green 5G networks[J]. IEEE Wireless Communications, 2017, 24(4): 72–80 doi: 10.1109/MWC.2017.1600343 ANDREWS J G, BUZZI S, WAN Choi, et al. What will 5G be?[J]. IEEE Journal on Selected Areas in Communications, 2014, 32(6): 1065–1082 doi: 10.1109/JSAC.2014.2328098 李釗, 戴曉琴, 陳柯宇, 等. 非正交多址接入下行鏈路用戶(hù)匹配與功率優(yōu)化算法[J]. 電子與信息學(xué)報(bào), 2017, 39(8): 1804–1811 doi: 10.11999/JEIT161197LI Zhao, DAI Xiaoqin, CHEN Keyu, et al. User matching and power optimization algorithm for downlink NOMA[J]. Journal of Electronics&Information Technology, 2017, 39(8): 1804–1811 doi: 10.11999/JEIT161197 TOMIDA S and HIGUCHI K. Non-orthogonal access with SIC in cellular downlink for user fairness enhancement[C]. International Symposium on Intelligent Signal Processing and Communications Systems (ISPACS), Chiang Mai, Thailand, 2011: 1–6. doi: 10.1109/ISPACS.2011.6146188. DING Zhiguo, FAN Pingzhi, and POOR H V. Impact of user pairing on 5G non-orthogonal multiple-access downlink transmissions[J]. IEEE Transactions on Vehicular Technology, 2016, 65(8): 6010–6023 doi: 10.1109/TVT.2015.2480766 AL-ABBASI Z Q and SO D K C. Resource allocation in non-orthogonal and hybrid multiple access system with proportional rate constraint[J]. IEEE Transactions on Wireless Communications, 2017, 16(10): 6309–6320 doi: 10.1109/TWC.2017.2721936 HUANG Kaibin and LAU V K N. Enabling wireless power transfer in cellular networks: Architecture, modeling and deployment[J]. IEEE Transactions on Wireless Communications, 2014, 13(2): 902–912 doi: 10.1109/TWC.2013.122313.130727 ZHANG Qi, HUANG Xiaobin, LI Quanzhong, et al. Cooperative jamming aided robust secure transmission for wireless information and power transfer in MISO channels[J]. IEEE Transactions on Communications, 2015, 63(3): 906–915 doi: 10.1109/TCOMM.2015.2405063 LI Quanzhong, ZHANG Qi, and QIN Jiayin. Secure relay beamforming for SWIPT in amplify-and-forward two-way relay networks[J]. IEEE Transactions on Vehicular Technology, 2016, 65(11): 9006–9019 doi: 10.1109/TVT.2016.2519339 ZENG Yong and ZHANG Rui. Optimized training design for wireless energy transfer[J]. IEEE Transactions on Communications, 2014, 63(2): 536–550 doi: 10.1109/TCOMM.2014.2385077 JU H and ZHANG Rui. Throughput maximization in wireless powered communication networks[J]. IEEE Transactions on Wireless Communications, 2014, 13(1): 418–428 doi: 10.1109/TWC.2013.112513.130760 DIAMANTOULAKIS P D, PAPPI K N, DING Zhiguo, et al. Wireless-powered communications with non-orthogonal multiple access[J]. IEEE Transactions on Wireless Communications, 2016, 15(12): 8422–8436 doi: 10.1109/TWC.2016.2614937 WU Qingqing, TAO Meixia, NG D W K, et al. Energy-efficient resource allocation for wireless powered communication networks[J]. IEEE Transactions on Wireless Communications, 2016, 15(3): 2312–2327 doi: 10.1109/TWC.2015.2502590 ZHANG Guangchi, XU Jie, WU Qingqing, et al. Wireless powered cooperative jamming for secure OFDM system[J]. IEEE Transactions on Vehicular Technology, 2018, 67(2): 1331–1346 doi: 10.1109/TVT.2017.2756877 BOYD S and VANDENBERGHE L. Convex Optimization[M]. UK: Cambridge University Press, 2009: 561–615. ZHANG Guangchi, LI Quanzhong, ZHANG Qi, et al. Signal-to-interference-plus-noise ratio-based multi-relay beamforming for multi-user multiple-input multiple-output cognitive relay networks with interference from primary network[J]. IET Communications, 2014, 9(2): 227–238 doi: 10.1049/iet-com.2014.0494 WANG Y P E, LIN Xingqin, ADHIKARY A, et al. A primer on 3GPP narrowband Internet of things[J]. IEEE Communications Magazine, 2017, 55(3): 117–123 doi: 10.1109/MCOM.2017.1600510CM -