基于高斯化-廣義匹配的脈沖型噪聲處理方法研究
doi: 10.11999/JEIT180191
-
1.
重慶郵電大學(xué)信號(hào)與信息處理重慶市重點(diǎn)實(shí)驗(yàn)室 ??重慶 ??400065
-
2.
武漢船舶通信研究所 ??武漢 ??430079
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(61701067, 61771085, 61671095),重慶市教育委員會(huì)科研基金(KJ1600427, KJ1600429)
A Novel Method for Nonlinear Processing in Impulsive Noise Based on Gaussianization and Generalized Matching
-
1.
Chongqing Key Laboratory of Signal and Information Processing, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
-
2.
Wuhan Maritime Communication Research Institute, Wuhan 430079, China
Funds: The National Natural Science Foundation of China (61701067, 61771085, 61671095), The Project supported by Scientific Research Foundation of the Chongqing Education Committee (KJ1600427, KJ1600429)
-
摘要: 針對(duì)脈沖型噪聲,該文提出一種新的非線性處理方法,即高斯化-廣義匹配(GGM)處理。GGM方法基于高斯化處理與廣義匹配濾波,可結(jié)合非參數(shù)的概率密度估計(jì)進(jìn)行設(shè)計(jì),解決噪聲模型未知時(shí)的非線性處理問(wèn)題。該文以脈沖型噪聲
${\rm S\alpha S}$ 分布模型為例,分析GGM方法的特點(diǎn)和性能;再結(jié)合Class A噪聲模型,討論GGM設(shè)計(jì)作為非參數(shù)方法相比模型假設(shè)失配的優(yōu)勢(shì);引入效能函數(shù),驗(yàn)證GGM方法在恒虛警技術(shù)中的運(yùn)用。結(jié)果表明,在已知噪聲分布情況下,GGM方法具有次優(yōu)檢測(cè)性能;當(dāng)噪聲模型未知時(shí),非參數(shù)GGM設(shè)計(jì)能保持穩(wěn)健性能,優(yōu)于模型失配下的處理。并且,GGM設(shè)計(jì)對(duì)樣本數(shù)目要求不高,為噪聲特性不明或時(shí)變的場(chǎng)景提供了一種新的信號(hào)處理方法。Abstract: A method based on Gaussianization and generalized matching, called Gaussianization-Generalized Matching (GGM) method is proposed, for nonlinear processing in impulsive noise. The GGM method can be designed based on noise samples, aided by nonparametric probability density estimation. Thus the GGM design is suitable for nonlinear processing in unknown noise models. The GGM method in the${\rm S\alpha S}$ model is analyzed, and also the comparison with another approach is presented based on unmatched noise model assumption in the Class A noise. The GGM method is applied to the constant false alarm rate technique via the efficacy function. Simulation and analysis results show that the GGM design is sub-optimal, works robustly when the noise model is unknown, and raises a low requirement on the sample number. Thus, the GGM method provides a promising choice when the noise model is unclear or time-varying.-
Key words:
- Impulsive noise /
- Nonlinear processing /
- Gaussianization /
- Generalized matching /
- Efficiency function
-
KAY S M. Fundamentals of Statistical Signal Processing, Volume II: Detection Theory[M]. Englewood Cliffs, US, Prentice-Hall, Inc., 1993: 94–115. LACHOS V H, ANGOLINI T, and ABANTO-VALLE C A. On estimation and local influence analysis for measurement errors models under heavy-tailed distributions[J]. Statistical Papers, 2011, 52(3): 567–590 doi: 10.1007/s00362-009-0270-4 DAVIS R R and CLAVIER O. Impulsive noise: A brief review[J]. Elsevier Hearing Research, 2017, 349: 34–36 doi: 10.1016/j.heares.2016.10.020 LI Xutao, JIN Lianwen, and WANG Shouyong. A simplified non-Gaussian mixture model for signal LO detection in -stable interference[C]. IEEE Congress on Image and Signal Processing, Beijing, China, 2008: 403–407. SHAO M and NIKIAS C L. Signal processing with fractional lower order moments: stable processes and their applications[J]. Proceedings of the IEEE, 1993, 81(7): 986–1010 doi: 10.1109/5.231338 ZHANG Guoyong, WANG Jun, YANG Guosheng, et al. Nonlinear processing for correlation detection in symmetric alpha-stable noise[J]. IEEE Signal Processing Letters, 2018, 25(1): 120–124 doi: 10.1109/LSP.2017.2776317 MIDDLETON D. Procedures for determining the parameters of the first-order canonical models of Class A and Class B electromagnetic interference[J]. IEEE Transactions on Electromagnetic Compatibility, 2007, 21(3): 190–208 doi: 10.1109/TEMC.1979.303731 TSIHRINTZIS G A and NIKIAS C L. Performance of optimum and suboptimum receivers in the presence of impulsive noise modeled as an alpha-stable process[J]. IEEE Transactions on Communications, 1995, 43(2/3/4): 904–914 doi: 10.1109/26.380123 VADALI S R K, RAY P, MULA S, et al. Linear detection of a weak signal in additive Cauchy noise[J]. IEEE Transactions on Communications, 2017, 65(3): 1061–1076 doi: 10.1109/TCOMM.2016.2647599 OH H and NAM H. Design and performance analysis of nonlinearity preprocessors in an impulsive noise environment[J]. IEEE Transactions on Vehicular Technology, 2017, 66(1): 364–376 doi: 10.1109/TVT.2016.2547889 LI Xutao, SUN Jun, WANG Shouyong, et al. Near-optimal detection with constant false alarm ratio in varying impulsive interference[J]. IET Signal Processing, 2013, 7(9): 824–832 doi: 10.1049/iet-spr.2013.0024 LI Xutao, CHEN Peng, FAN Lisheng, et al. Normalization-based receiver using BCGM approximation for -stable noise channels[J]. Electronics Letters, 2013, 49(15): 965–967 doi: 10.1049/el.2013.1289 SWAMI A and SADLER B M. On some detection and estimation problems in heavy-tailed noise[J]. Elsevier Signal Processing, 2002, 82(12): 1829–1846 doi: 10.1016/S0165-1684(02)00314-6 張楊勇, 劉勇. 低頻段大氣噪聲及處理技術(shù)[J]. 艦船科學(xué)技術(shù), 2008, 30(S1): 85–88 doi: 10.3404/j.issn.1672-7649.2008.S021ZHANG Yangyong and LIU Yong. Atmospheric-noise at low frequency and its processing technique[J]. Ship Science&Technology, 2008, 30(S1): 85–88 doi: 10.3404/j.issn.1672-7649.2008.S021 WANG Pingbo, LIU Feng, CAI Zhiming, et al. G-Filter's Gaussianization function for interference background[C]. International Conference on Signal Acquisition and Processing, Nanjing, China, 2010: 76–79. SAMIUDDIN M and EL-SAYYAD G M. On nonparametric kernel density estimates[J]. Biometrika, 1990, 77(4): 865–874 doi: 10.1093/77.4.865 SILVERMAN B W. Density Estimation for Statistics and Data Analysis[M]. London, UK, Chapman & Hall, 1986: 45–48. HASHEMIFARD Z and AMINDAVAR H. PDF approximations to estimation and detection in time-correlated alpha-stable channels[J]. Elsevier Signal Processing, 2017, 133: 97–106 doi: 10.1016/j.sigpro.2016.10.021 BIBALAN M H, AMINDAVAR H, and AMIRMAZLAGHANI M. Characteristic function based parameter estimation of skewed alpha-stable distribution: An analytical approach[J]. Elsevier Signal Processing, 2017, 130: 323–336 doi: 10.1016/j.sigpro.2016.07.020 KOLODZIEJSKI K R and BETZ J W. Detection of weak random signals in IID non-Gaussian noise[J]. IEEE Transactions on Communications, 2000, 48(2): 222–230 doi: 10.1109/26.823555 ARIF M, NASEEM I, MOINUDDIN M, et al. Design of optimum error nonlinearity for channel estimation in the presence of Class-A impulsive noise[C]. IEEE International Conference on Intelligent and Advanced Systems, Kuala Lumpur, Malaysia, 2017: 1–6. WEINBERG G V. On the construction of CFAR decision rules via transformations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(2): 1140–1146 doi: 10.1109/TGRS.2016.2620138 -