一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

非正交多址接入系統(tǒng)中基于受限馬爾科夫決策過程的網(wǎng)絡切片虛擬資源分配算法

唐倫 施穎潔 楊希希 陳前斌

唐倫, 施穎潔, 楊希希, 陳前斌. 非正交多址接入系統(tǒng)中基于受限馬爾科夫決策過程的網(wǎng)絡切片虛擬資源分配算法[J]. 電子與信息學報, 2018, 40(12): 2962-2969. doi: 10.11999/JEIT180131
引用本文: 唐倫, 施穎潔, 楊希希, 陳前斌. 非正交多址接入系統(tǒng)中基于受限馬爾科夫決策過程的網(wǎng)絡切片虛擬資源分配算法[J]. 電子與信息學報, 2018, 40(12): 2962-2969. doi: 10.11999/JEIT180131
Lun TANG, Yingjie SHI, Xixi YANY, Qianbin CHEN. Network Slice Virtual Resource Allocation Algorithm Based on Constrained Markov Decision Process in Non-orthogonal Multiple Access[J]. Journal of Electronics & Information Technology, 2018, 40(12): 2962-2969. doi: 10.11999/JEIT180131
Citation: Lun TANG, Yingjie SHI, Xixi YANY, Qianbin CHEN. Network Slice Virtual Resource Allocation Algorithm Based on Constrained Markov Decision Process in Non-orthogonal Multiple Access[J]. Journal of Electronics & Information Technology, 2018, 40(12): 2962-2969. doi: 10.11999/JEIT180131

非正交多址接入系統(tǒng)中基于受限馬爾科夫決策過程的網(wǎng)絡切片虛擬資源分配算法

doi: 10.11999/JEIT180131
基金項目: 國家自然科學基金(61571073)
詳細信息
    作者簡介:

    唐倫:男,1973年生,教授,主要研究方向為新一代無線通信網(wǎng)絡、異構蜂窩網(wǎng)絡、軟件定義無線網(wǎng)絡等

    施穎潔:女,1993年生,碩士生,研究方向為網(wǎng)絡虛擬資源分配

    楊希希:女,1992年生,碩士生,研究方向為網(wǎng)絡虛擬化

    陳前斌:男,1967年生,教授,博士生導師,主要研究方向為個人通信、多媒體信息處理與傳輸、下一代移動通信網(wǎng)絡、異構蜂窩網(wǎng)絡等

    通訊作者:

    唐倫  tangl@cqupt.edu.cn

  • 中圖分類號: TN929.5

Network Slice Virtual Resource Allocation Algorithm Based on Constrained Markov Decision Process in Non-orthogonal Multiple Access

Funds: The National Natural Science Foundation of China (61571073)
  • 摘要: 針對無線接入網(wǎng)絡切片虛擬資源分配優(yōu)化問題,該文提出基于受限馬爾可夫決策過程(CMDP)的網(wǎng)絡切片自適應虛擬資源分配算法。首先,該算法在非正交多址接入(NOMA)系統(tǒng)中以用戶中斷概率和切片隊列積壓為約束,切片的總速率作為回報,運用受限馬爾可夫決策過程理論構建資源自適應問題的動態(tài)優(yōu)化模型;其次定義后決策狀態(tài),規(guī)避最優(yōu)值函數(shù)中的期望運算;進一步地,針對馬爾科夫決策過程(MDP)的“維度災難”問題,基于近似動態(tài)規(guī)劃理論,定義關于分配行為的基函數(shù),替代決策后狀態(tài)空間,減少計算維度;最后設計了一種自適應虛擬資源分配算法,通過與外部環(huán)境的不斷交互學習,動態(tài)調整資源分配策略,優(yōu)化切片性能。仿真結果表明,該算法可以較好地提高系統(tǒng)的性能,滿足切片的服務需求。
  • 圖  1  系統(tǒng)場景圖

    圖  2  切片調度模型

    圖  3  狀態(tài)轉移圖

    圖  4  連續(xù)600個周期內值函數(shù)近似值與樣本值比較

    圖  5  不同分配行為及約束條件下,中斷概率比較

    圖  6  不同方案下,總速率的比較

    圖  7  不同方案下,平均隊列積壓的比較

    表  1  基函數(shù)定義

    基函數(shù) 描述
    $P_{ln }^m(t) + {\alpha _{ln}}(t)$ 切片l 功率分配粒度
    ${N_{ln }}(t) + {\beta _{ln }}(t)$ 切片l 的子載波數(shù)
    ${(P_{ln }^m(t) + {\alpha _{ln }}(t))^2}$ 切片l 功率分配粒度平方
    ${({N_{ln }}(t) + {\beta _{ln }}(t))^2}$ 切片l 的子載波數(shù)平方
    $({N_{ln }}(t) + {\beta _{ln }}(t))(P_{ln }^m(t) + {\alpha _{ln }}(t))$ 切片l 中功率分配粒度與子載波數(shù)的乘積
    下載: 導出CSV

    表  2  基于近似動態(tài)規(guī)劃的資源自適應算法

     輸入: ${\chi _h}\left( {{S^a}\left( t \right)} \right)$:基函數(shù); $\gamma $:折扣因子;
     輸出: ${{η}}$:參數(shù)向量; ${\lambda _1}$, ${\lambda _2}$:拉格朗日因子;
     (1) while a new time period starts do
     (2)  t← 0; ${{η}}$← 0; ${\lambda _1}$, ${\lambda _2}$← 0; //初始化
     (3) for (t = 1; t <= T; t++)
     (4)  while
     (5)   while
     (6)    根據(jù)式(40)更新樣本函數(shù)值
     (7)    if t>0 then
     (8)     根據(jù)式(39)更新參數(shù)向量 ${{η}}$
     (9)    End if
     (10)   采樣外部隨機變量w(t+1)的樣本值
     (11)   代入更新參數(shù)向量 ${{η}}$,根據(jù)式(35)更新決策后 狀態(tài)的近似函數(shù)值
     (12)   end while
     (13)   根據(jù)式(34)代入最優(yōu)策略行為計算目標函數(shù)
     (14)   根據(jù)式(32)和式(33)更新 ${\lambda _1}$, ${\lambda _2}$
     (15)  end while
     (16) end for
     (17) end while
    下載: 導出CSV

    表  3  系統(tǒng)仿真參數(shù)

    仿真參數(shù) 仿真值
    子載波數(shù) 64
    基站發(fā)射功率 33 dBm
    路徑損耗 133.6+35lg(d)
    傳輸天線數(shù) 1
    接收天線數(shù) 1
    基站服務范圍 500 m
    單個子載波疊加用戶數(shù) 1~4 (個)
    分配行為:調整功率粒度 $\alpha = \{ {\rm{0}}{\rm{.25}},{\rm{0}}{\rm{.50}},{\rm{1.00}}\} $
    分配行為:調整子載波數(shù) $\beta {\rm{ = 1}}$
    切片1需求 (5 ms, 200 kbit/s)
    切片2需求 (10 ms, 500 kbit/s)
    切片3需求 (50 ms, 1 Mbit/s)
    下載: 導出CSV
  • 唐倫, 張亞, 梁榮, 等. 基于網(wǎng)絡切片的網(wǎng)絡效用最大化虛擬資源分配算法[J]. 電子與信息學報, 2017, 39(8): 1812–1818 doi: 10.11999/JEIT161322

    TANG Lun, ZHANG Ya, LIANG Rong, et al. Virtual resource allocation algorithm for network utility maximization based on network slicing[J]. Journal of Electronics&Information Technology, 2017, 39(8): 1812–1818 doi: 10.11999/JEIT161322
    SALLENT O, PEREZ-ROMERO J, FERRUS R, et al. On radio access network slicing from a radio resource management perspective[J]. IEEE Wireless Communications, 2017, 24(5): 166–174 doi: 10.1109/MWC.2017.1600220WC
    PARSAEEFARD S, DAWADI R, DERAKHSHANI M, et al. Joint user-association and resource-allocation in virtualized wireless networks[J]. IEEE Access, 2016, 4: 2738–2750 doi: 10.1109/ACCESS.2016.2560218
    BEGA D, GRAMAGLIA M, BANCHS A, et al. Optimising 5G infrastructure markets: The business of network slicing[C]. IEEE Conference on Computer Communications, Atlanta, USA, 2017: 1–9.
    AKPAKWU G A, SILVA B J, HANCKE G P, et al. A survey on 5G networks for the internet of things: Communication technologies and challenges[J]. IEEE Access, 2018, 6: 3619–3647 doi: 10.1109/ACCESS.2017.2779844
    ZHANG Zihan, XIA Qinghong, YU Guanding, et al. Power control, user scheduling and resource allocation for downlink NOMA systems with imperfect channel state information[C]. 2017 9th International Conference on Wireless Communications and Signal Processing, Nanjing, China, 2017: 1–6.
    ZHU Jianyue, WANG Jiaheng, HUANG Yongming, et al. On optimal power allocation for downlink non-orthogonal multiple access systems[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(12): 2744–2757 doi: 10.1109/JSAC.2017.2725618
    FANG Fang, ZHANG Haijun, CHENG Julian, et al. Joint user scheduling and power allocation optimization for energy efficient NOMA systems with imperfect CSI[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(12): 2874–2885 doi: 10.1109/JSAC.2017.2777672
    DAWADI R, PARSAEEFARD S, DERAKHSHANI M, et al. Power-efficient resource allocation in NOMA virtualized wireless networks[C]. IEEE Global Communications Conference, Washington D.C., USA, 2016: 1–6.
    ZHANG Qi, ZHU Quanyan, ZHANI M F, et al. Dynamic service placement in geographically distributed clouds[C]. 2012 IEEE 32nd International Conference on Distributed Computing Systems, Macau, China, 2012: 526–535.
    ISLAM S M R, AVAZOV N, DOBRE O A, et al. Power-domain Non-Orthogonal Multiple Access (NOMA) in 5G systems: potentials and challenges[J]. IEEE Communications Surveys&Tutorials, 2017, 19(2): 721–742 doi: 10.1109/COMST.2016.2621116
    CHEN Tianyi, MOKHTARI A, WANG Xin, et al. Stochastic averaging for constrained optimization with application to online resource allocation[J]. IEEE Transactions on Signal Processing, 2017, 65(12): 3078–3093 doi: 10.1109/TSP.2017.2679690
    POWELL W B. Approximate Dynamic Programming: Solving the Curses of Dimensionality[M]. NJ, Princeton: Wiley, 2007: 129–144.
    FANG Fang, ZHANG Haijun, CHENG Julian, et al. Energy-efficient resource scheduling for NOMA systems with imperfect channel state information[C]. IEEE International Conference on Communications, Paris, France, 2017: 1–5.
    RAI R, ZHU H, and WANG Jiangzhou. Resource scheduling in Non-Orthogonal Multiple Access (NOMA) based cloud-RAN systems[C]. 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON), New York City, USA, 2017: 418–422.
  • 加載中
圖(7) / 表(3)
計量
  • 文章訪問數(shù):  1617
  • HTML全文瀏覽量:  693
  • PDF下載量:  44
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2018-01-30
  • 修回日期:  2018-08-16
  • 網(wǎng)絡出版日期:  2018-08-23
  • 刊出日期:  2018-12-01

目錄

    /

    返回文章
    返回