基于阻抗檢測微傳感技術(shù)的皮膚滲透性評估方法
doi: 10.11999/JEIT171242
-
(中國科學(xué)院電子學(xué)研究所 北京 100190) ②(中國科學(xué)院大學(xué) 北京 100049)
國家自然科學(xué)基金(61431019),北京市自然科學(xué)基金(Z160002)
Evaluation of Skin Permeability Based on Impedance Detection by Microsensor Technology
-
(Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China)
The National Natural Science Foundation of China (61431019), The Key Project of Beijing Municipal Natural Science Foundation (Z160002)
-
摘要: 基于宏電極的單頻皮膚阻抗測量是利用阻抗進行皮膚滲透性研究的傳統(tǒng)方法之一,其存在誤差大、靈敏度低且不易于設(shè)備集成的缺點。由此,該文通過分析皮膚的分層生理結(jié)構(gòu)以及皮膚滲透性與角質(zhì)層(SC)阻抗的關(guān)系,設(shè)計了基于柔性非對稱叉指微電極的皮膚阻抗傳感器,構(gòu)建了RCW分層阻抗模型,實現(xiàn)了對人體角質(zhì)層阻抗的檢測分析。實驗結(jié)果表明,傳感器輸出的阻抗模值 和 模型擬合參數(shù)可用作表征皮膚滲透性的重要指標(biāo)。該方法可用于區(qū)分不同個體的皮膚滲透性,為人體生理生化檢測相關(guān)的可穿戴設(shè)備參數(shù)調(diào)節(jié)提供依據(jù)。
-
關(guān)鍵詞:
- 可穿戴設(shè)備 /
- 皮膚阻抗 /
- 叉指微電極 /
- 皮膚滲透能力 /
- 阻抗模型
Abstract: Traditionally, skin permeability evaluation, which is realized by impedance detected at a certain frequency based on macro electrodes, has the disadvantages of large measurement error, low sensitivity and difficulty in integration. In order to resolve this problem, a flexible non-symmetric interdigital microsensor is designed by analyzing the layered structure of skin and the relationship between skin permeability and impedance of Stratum Corneum(SC). The impedance of SC is measured and analyzed based on the RCW-layered impedance model. It is illustrated that the impedance magnitude of microsensor output and model fitting parameters can be used as the important indicators to evaluate skin permeability. It is proved that the developed sensor can be applied to distinguishing the different individuals skin permeability, and it strongly supports the adjustment of wearable devices related to human physiological and biochemical detection.-
Key words:
- Wearable device /
- Skin impedance /
- Interdigital microelectrode /
- Skin permeability /
- Impedance model
-
KIM J, CAMPBELL A S, and WANG J. Wearable non-invasive epidermal glucose sensors: A review0[J]. Talanta, 2017, 177: 163-170. doi: 10.1016/j.talanta.2017.08.077. 趙湛, 韓璐, 方震, 等. 基于可穿戴設(shè)備的日常壓力狀態(tài)評估研究[J]. 電子與信息學(xué)報, 2017, 39(11): 2669-2676. doi: 10.11999/JEIT170120. ZHAO Zhan, HAN Lu, FANG Zhen, et al. Research on daily stress detection based on wearable device[J]. Journal of Electronics Information Technology, 2017, 39(11): 2669-2676. doi: 10.11999/JEIT170120. KENR Y, YEO J C, and LIM C T. Emerging flexible and wearable physical sensing platform for healthcare and biomedical applications[J]. Microsystems Nanoengineering, 2016, 2, 16043. doi: 10.1038/micronano.2016.43. KRISHNAN S, SHI Y, CHADWEBB R, et al. Multimodal epidermal devices for hydration monitoring[J]. Microsystems Nanoengineering, 2017, 3, 17014. doi: 10.1038/micronano. 2017.14. MCCORMICK C, HEATH D, and CONNOLLY P. Minimally Invasive Sensing[M]. Rijeka, Croatia, 2011: 355-382. VENTRELLI L, MARSILIO S L, and BARILLARO G. Microneedles for transdermal biosensing: Current picture and future direction[J]. Advanced Healthcare Materials, 2015, 4(17): 2606-2640. doi: 10.1002/adhm.201500450. EASTMAN R C, CHASE H P, BUCKINGHAM B, et al. Use of the GlucoWatch biographer in children and adolescents with diabetes[J]. Pediatric Diabetes, 2002, 3(3): 127-34. doi: 10.1034/j.1399-5448.2002.30302.x. YOSHIMATSU H, ISHII K, KONNO Y, et al. Prediction of human percutaneous absorption from in vitro and in vivo animal experiments[J]. International Journal of Pharmaceutics, 2017, 534(1): 348-355. doi: 10.1016/j.ijpharm. 2017.10.048. WHITE E A, HORNE A, RUNCIMAN J, et al. On the correlation between single-frequency impedance measurements and human skin permeability to water[J]. Toxicology in Vitro, 2011, 25(8): 2095-2104. doi: 10.1016/ j.tiv.2011.09.011. SCHWINGENSCHUH S, SCHARFETTER H, MARTINSEN O G, et al. Assessment of skin permeability to topically applied drugs by skin impedance and admittance[J]. Physiological Measurement, 2017, 38(11): N138-N150. doi: 10.1088/1361-6579/aa904e. MARTINSEN ? G, GRIMNES S, and HAUG E. Measuring depth depends on frequency in electrical skin impedance measurements[J]. Skin Research Technology, 2010, 5(3): 179-181. doi: 10.1111/j.16000846.1999.tb00128.x. CLEMENTE F, ARPAIA P, and MANNA C. Characterization of human skin impedance after electrical treatment for transdermal drug delivery[J]. Measurement, 2013, 46(9): 3494-3501. doi: 10.1016/j.measurement.2013.06. 033. LI Dachao, PU Zhihua, LIANG Wenshuai, et al. Non-invasive measurement of normal skin impedance for determining the volume of the transdermally extracted interstitial fluid[J]. Measurement, 2015, 62: 215-221. doi: 10.1016/j.measurement. 2014.11.015. KALIA Y N and GUY R H. The electrical characteristics of human skin in vivo[J]. Pharmaceutical Research, 1995, 12(11): 1605-1613. doi: 10.1023/A:1016228730522. IVANIC R, NOVOTNY I, REHACEK V, et al. Thin film non-symmetric microelectrode array for impedance monitoring of human skin[J]. Thin Solid Films, 2003, 433(1): 332-336. doi: 10.1016/S0040-6090(03)00389-4. MAMISHEV A V, SUNDARA-RAJAN K, YANG Fumin, et al. Interdigital sensors and transducers[J]. Proceedings of the IEEE, 2004, 92(5): 808-845. doi: 10.1109/JPROC.2004. 826604. 楊鵬飛, 彭春榮, 張海巖, 等. SOI微型電場傳感器的設(shè)計與測試[J]. 電子與信息學(xué)報, 2011, 33(11): 2771-2774. doi: 10.3724/SP.J.1146.2010.01285. YANG Pengfei, PENG Chunrong, ZHANG Haiyan, et al. Design and testing of a SOI electric-field microsensor[J]. Journal of Electronics Information Technology, 2011, 33(11): 2771-2774. doi: 10.3724/SP.J.1146.2010.01285. HUCLOVA S, BAUMANN D, TALARY M S, et al. Sensitivity and specificity analysis of fringing-field dielectric spectroscopy applied to a multi-layer system modelling the human skin[J]. Physics in Medicine Biology, 2011, 56(24): 7777-7793. doi: 10.1088/0031-9155/56/24/007. GABRIEL S, LAU R W, and GABRIEL C. The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues[J]. Physics in Medicine Biology, 1996, 41(11): 2271-2293. doi: 10.1088/0031-9155/ 41/11/003. BARONI A, BUOMMINO E, DE G V, et al. Structure and function of the epidermis related to barrier properties[J]. Clinics in Dermatology, 2012, 30(3): 257-262. doi: 10.1016/ j.clindermatol.2011.08.007. BIRGERSSON U, BIRGERSSON E, ABERG P, et al. Non-invasive bioimpedance of intact skin: Mathematical modeling and experiments[J]. Physiological Measurement, 2011, 32(1): 1-18. doi: 10.1088/0967-3334/32/1/001. SANDBY-M LLER J, POULSEN T, and WULF H C. Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits[J]. Acta Dermato-Venereologica, 2003, 83(6): 410-413. doi: 10.1080/00015550310015419. -
計量
- 文章訪問數(shù): 1636
- HTML全文瀏覽量: 227
- PDF下載量: 97
- 被引次數(shù): 0