一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

基于可調(diào)Q因子小波變換的識別左右手運動想象腦電模式研究

陳萬忠 王曉旭 張濤

陳萬忠, 王曉旭, 張濤. 基于可調(diào)Q因子小波變換的識別左右手運動想象腦電模式研究[J]. 電子與信息學報, 2019, 41(3): 530-536. doi: 10.11999/JEIT171191
引用本文: 陳萬忠, 王曉旭, 張濤. 基于可調(diào)Q因子小波變換的識別左右手運動想象腦電模式研究[J]. 電子與信息學報, 2019, 41(3): 530-536. doi: 10.11999/JEIT171191
Wanzhong CHEN, Xiaoxu WANG, Tao ZHANG. Research of Discrimination Between Left and Right Hand Motor Imagery EEG Patterns Based on Tunable Q-Factor Wavelet Transform[J]. Journal of Electronics & Information Technology, 2019, 41(3): 530-536. doi: 10.11999/JEIT171191
Citation: Wanzhong CHEN, Xiaoxu WANG, Tao ZHANG. Research of Discrimination Between Left and Right Hand Motor Imagery EEG Patterns Based on Tunable Q-Factor Wavelet Transform[J]. Journal of Electronics & Information Technology, 2019, 41(3): 530-536. doi: 10.11999/JEIT171191

基于可調(diào)Q因子小波變換的識別左右手運動想象腦電模式研究

doi: 10.11999/JEIT171191
基金項目: 中央高?;究蒲袑m椯Y金(451170301193),吉林省科技發(fā)展計劃自然基金項目(20150101191JC),吉林省產(chǎn)業(yè)技術(shù)研發(fā)項目(2016C025)
詳細信息
    作者簡介:

    陳萬忠:男,1963年生,教授,研究方向為生物信息感知和人機交互

    王曉旭:女,1993年生,碩士生,研究方向為信號處理和模式識別

    張濤:男,1991年生,博士生,研究方向為信號處理和模式識別

    通訊作者:

    陳萬忠 chenwz@jlu.edu.cn

  • 中圖分類號: TN911.72

Research of Discrimination Between Left and Right Hand Motor Imagery EEG Patterns Based on Tunable Q-Factor Wavelet Transform

Funds: The Fundamental Research Foundation for the Central Universities (451170301193), The Natural Science Foundation in the Science and Technology Development of Jilin Province (20150101191JC), The Industrial Technology Research and Development Project in Jilin Province (2016C025)
  • 摘要:

    針對識別左右手運動想象腦電圖信號(EEG)模式精度和互信息不高的問題,該文采用基于可調(diào)Q因子小波變換(TQWT)算法來處理腦電信號。首先,利用TQWT對腦電圖信號進行分解;隨后,提取子頻帶信號的小波系數(shù)能量、自回歸模型(AR)系數(shù)以及分形維數(shù);最后,利用線性判別分析(LDA)對提取的腦電特征進行識別。采用BCI2003和BCI2005競賽數(shù)據(jù)對所提出的算法進行驗證,4名受試者的最高識別率分別為88.11%, 89.33%, 77.13%和78.80%,最大互信息分別為0.95, 0.96, 0.43和0.45。實驗結(jié)果表明,所提算法取得了高分類精度及互信息值,驗證了其有效性。

  • 圖  1  TQWT分解($J\,$=4)

    圖  2  S2受試者3類特征的盒圖

    圖  3  特征組合后得到的識別率結(jié)果

    表  1  不同受試者采用單一特征和組合特征所得平均識別率及最高識別率

    受試者特征組合平均識別率(%)最高識別率(%)
    F181.7486.44
    F280.9585.66
    F367.9373.38
    S1F1+F286.1686.90
    F1+F384.7685.47
    F2+F385.0386.89
    F1+F2+F386.4588.11
    F184.2089.04
    F276.5281.06
    F355.8761.20
    S2F1+F287.8589.30
    F1+F387.6388.59
    F2+F380.2281.33
    F1+F2+F387.9689.33
    F166.0871.46
    F266.3068.93
    F355.1658.92
    S3F1+F275.6176.99
    F1+F371.4073.08
    F2+F371.4972.72
    F1+F2+F374.7077.13
    F173.2477.87
    F269.1074.60
    F352.3658.34
    S4F1+F277.6578.79
    F1+F376.1477.24
    F2+F374.0675.25
    F1+F2+F376.7378.80
    下載: 導出CSV

    表  2  本文方法與文獻[5,6]得到的最高識別率

    受試者平均值(%)
    S1S2S3S4
    文獻[5]90.7185.5373.1876.9581.59
    文獻[6]90.7187.4278.8974.6382.91
    本文方法88.1189.3377.1378.8083.34
    下載: 導出CSV

    表  3  本文方法與BCI2003競賽前3名獲勝者、文獻[5,6]方法最大互信息

    特征選擇最大互信息
    (bit)
    最小錯誤識別率
    (%)
    BCI2003_1 st小波特征0.6110.71
    BCI2003_2 ndAR譜能量0.4615.71
    BCI2003_3 rdAAR參數(shù)模型0.4517.14
    文獻[5]方法相空間特征0.639.29
    文獻[6]方法小波特征0.819.29
    本文方法組合特征0.9511.89
    下載: 導出CSV

    表  4  不同受試者TQWT參數(shù)設置

    受試者QrJ
    S1132
    S2237
    S3132
    S4233
    下載: 導出CSV

    表  5  本文方法的時耗統(tǒng)計(s)

    TQWT過程能量特征AR系數(shù)特征分形維數(shù)特征分類總時間
    S10.00100.00120.00160.05590.01740.0771
    S20.00220.00100.00150.05360.01660.0749
    S30.00120.00100.00160.05330.01630.0734
    S40.00140.00150.00180.05470.01710.0765
    下載: 導出CSV
  • 佘青山, 陳希豪, 高發(fā)榮. 基于感興趣腦區(qū)LASSO-Granger因果關(guān)系的腦電特征提取算法[J]. 電子與信息學報, 2016, 38(5): 1266–1270. doi: 10.11999/JEIT150851

    SHE Qingshan, CHEN Xihao, and GAO Farong. Feature extraction of electroencephalography based on LASSO-Granger causality between brain region of interest[J]. Journal of Electronics &Information Technology, 2016, 38(5): 1266–1270. doi: 10.11999/JEIT150851
    BALCONI M and MAZZA G. Brain oscillations and BIS/BAS (behavioral inhibition/activation system) effects on processing masked emotional cues. ERS/ERD and coherence measures of alpha band[J]. International Journal of Psychophysiology, 2009, 74(2): 158–165. doi: 10.1016/j.ijpsycho.2009.08.006
    呂俊, 謝勝利, 章晉龍. 腦-機接口中基于ERS/ERD的自適應空間濾波算法[J]. 電子與信息學報, 2009, 31(2): 314–318.

    LV Jun, XIE Shengli, and ZHANG Jinlong. Adaptive spatial filter based on ERD/ERS for brain-computer interfaces[J]. Journal of Electronics &Information Technology, 2009, 31(2): 314–318.
    陳強, 陳勛, 余鳳瓊. 基于獨立向量分析的腦電信號中肌電偽跡的去除方法[J]. 電子與信息學報, 2016, 38(11): 2840–2847. doi: 10.11999/JEIT160209

    CHEN Qiang, CHEN Xun, and YU Fengqiong. Removal of muscle artifact from EEG data based on independent vector analysis[J]. Journal of Electronics &Information Technology, 2016, 38(11): 2840–2847. doi: 10.11999/JEIT160209
    CHEN Minyou, FANG Yonghui, and ZHENG Xufei. Phase space reconstruction for improving the classification of single trial EEG[J]. Biomedical Signal Processing & Control, 2014, 11(1): 10–16. doi: 10.1016/j.bspc.2014.02.002
    HAMID M and ZABIHOLLAH S M. Improvement of EEG-based motor imagery classification using ring topology-based particle swarm optimization[J]. Biomedical Signal Processing & Control, 2017, 32: 69–75. doi: 10.1016/j.bspc.2016.10.015
    PATTNAIK S, DASH M, and SABUT S K. DWT-based feature extraction and classification for motor imaginary EEG signals[C]. International Conference on Systems in Medicine and Biology, Kharagpur, India, 2016: 186–201.
    徐佳琳, 左國坤. 基于互信息與主成分分析的運動想象腦電特征選擇算法[J]. 生物醫(yī)學工程學雜志, 2016, 33(2): 201–207. doi: 10.7507/1001-5515.20160036

    XU Jialin and ZUO Guokun. Motor imagery electroencephalogram feature selection algorithm based on mutual information and principal component analysis[J]. Journal of Biomedical Engineering, 2016, 33(2): 201–207. doi: 10.7507/1001-5515.20160036
    羅志增, 周鎮(zhèn)定, 周瑛. 雙樹復小波特征在運動想象腦電識別中的應用[J]. 傳感技術(shù)學報, 2014, 27(5): 575–580. doi: 10.3969/j.issn.1004-1699.2014.05.001

    LUO Zhizeng, ZHOU Zhending, and ZHOU Ying. The application of DTCWT feature in recognition of motor imagery[J]. Journal of Sensors and Actuators, 2014, 27(5): 575–580. doi: 10.3969/j.issn.1004-1699.2014.05.001
    周瑛. 虛擬場景下運動想象腦電信號識別研究[D]. [碩士論文], 杭州電子科技大學, 2013.

    ZHOU Ying. The research of motor imagery recognition in virtual reality[D]. [Master dissertation], Hangzhou Dianzi University, 2013.
    AL-QAZZAZ N K, HAMID B M A S, AHMAD S A, et al. Automatic artifact removal in EEG of normal and demented individuals using ICA-WT during working memory tasks[J]. Sensors, 2017, 17(6): 1–25. doi: 10.3390/s17061326
    GHORBANIAN P, DEVILBISS D M, VERMA A, et al. Identification of resting and active state EEG features of Alzheimer’s disease using discrete wavelet transform[J]. Annals of Biomedical Engineering, 2013, 41(6): 1243–1257. doi: 10.1007/s10439-013-0795-5
    HASSAN A R and BHUIYAN M I H. An automated method for sleep staging from EEG signals using normal inverse Gaussian parameters and adaptive boosting[J]. Neurocomputing, 2017, 219: 76–87. doi: 10.1016/j.neucom.2016.09.011
    BENJAMIN B. BCI Competition II[OL]. http://www.bbci.de/competition/ii/, 2003.
    BENJAMIN B. BCI Competition III[OL]. http://www.bbci.de/competition/iii/, 2005.
    VIDAURRE C, SCHLOGL A, CABEZA R, et al. A fully on-line adaptive BCI[J]. IEEE Transactions on Biomedical Engineering, 2006, 53(6): 1214–1219. doi: 10.1109/TBME.2006.873542
    BAYRAM I and SELESNICK I W. Frequency-domain design of overcomplete rational-dilation wavelet transforms[J]. IEEE Transactions on Signal Processing, 2009, 57(8): 2957–2972. doi: 10.1109/TSP.2009.2020756
    IVAN S. Tunable Q-factor wavelet transform[OL]. http://eeweb.poly.edu/iselesni/TQWT/index.html, 2016.
    SELESNICK I W. Wavelet transform with tunable Q-factor[J]. IEEE Transactions on Signal Processing, 2011, 59(8): 3560–3575. doi: 10.1109/TSP.2011.2143711
    AMIN H U, MALIK A S, AHMAD R F, et al. Feature extraction and classification for EEG signals using wavelet transform and machine learning techniques[J]. Australasian Physical & Engineering Sciences in Medicine, 2015, 38(1): 139–149. doi: 10.1007/s13246-015-0333-x
    LAWHERN V, HAIRSTON W D, MCDOWELL K, et al. Detection and classification of subject-generated artifacts in EEG signals using autoregressive models[J]. Journal of Neuroscience Methods, 2012, 208(2): 181–189. doi: 10.1016/j.jneumeth.2012.05.017
    PHOTHISONOTHAI M and NAKAGAWA M. EEG-based classification of motor imagery tasks using fractal dimension and neural network for brain-computer interface[J]. IEICE Transactions on Information and Systems, 2008, 91(1): 44–53. doi: 10.1093/ietisy/e91-d.1.44
    訾艷陽, 胥永剛, 何正嘉. 離散振動信號分形盒維數(shù)的改進算法和應用[J]. 機械科學與技術(shù), 2001(3): 373–376. doi: 10.3321/j.issn:1003-8728.2001.03.021

    ZI Yanyang, XU Yonggang, and HE Zhengjia. Fractal box dimension of discrete vibration signals[J]. Mechanical Science and Technology for Aerospace Engineering, 2001(3): 373–376. doi: 10.3321/j.issn:1003-8728.2001.03.021
    GUPTA S and SAINI H. EEG features extraction using PCA plus LDA approach based on L1-norm for motor imaginary classification[C]. IEEE International Conference on Computational Intelligence and Computing Research, Coimbatore, India, 2015: 1–5.
    SCHLOGL A, KEINRATH C, SCHERER R, et al. Information transfer of an EEG-based brain computer interface[C]. International IEEE EMBS Conference on Neural Engineering, Capri Island, Italy, 2003: 641–644.
    FELE-ZORZ G, KAVSEK G, NOVAK-ANTOLIC Z, et al. A comparison of various linear and non-linear signal processing techniques to separate uterine EMG records of term and pre-term delivery groups[J]. Medical & Biological Engineering & Computing, 2008, 46(9): 911–922. doi: 10.1007/s11517-008-0350-y
  • 加載中
圖(3) / 表(5)
計量
  • 文章訪問數(shù):  2592
  • HTML全文瀏覽量:  796
  • PDF下載量:  82
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2017-12-19
  • 修回日期:  2018-12-06
  • 網(wǎng)絡出版日期:  2018-12-21
  • 刊出日期:  2019-03-01

目錄

    /

    返回文章
    返回