基于可調(diào)Q因子小波變換的識別左右手運動想象腦電模式研究
doi: 10.11999/JEIT171191
-
吉林大學通信工程學院 ??長春 ??130012
Research of Discrimination Between Left and Right Hand Motor Imagery EEG Patterns Based on Tunable Q-Factor Wavelet Transform
-
College of Communication Engineering, Jilin University, Changchun 130012, China
-
摘要:
針對識別左右手運動想象腦電圖信號(EEG)模式精度和互信息不高的問題,該文采用基于可調(diào)Q因子小波變換(TQWT)算法來處理腦電信號。首先,利用TQWT對腦電圖信號進行分解;隨后,提取子頻帶信號的小波系數(shù)能量、自回歸模型(AR)系數(shù)以及分形維數(shù);最后,利用線性判別分析(LDA)對提取的腦電特征進行識別。采用BCI2003和BCI2005競賽數(shù)據(jù)對所提出的算法進行驗證,4名受試者的最高識別率分別為88.11%, 89.33%, 77.13%和78.80%,最大互信息分別為0.95, 0.96, 0.43和0.45。實驗結(jié)果表明,所提算法取得了高分類精度及互信息值,驗證了其有效性。
-
關(guān)鍵詞:
- 腦電圖 /
- 運動想象 /
- 可調(diào)Q因子小波變換 /
- 線性判別分析
Abstract:In view of the problem of low accuracy and mutual information in left and right hand motor imagery-based ElectroEncephaloGram (EEG), a new approach based on Tunable Q-factor Wavelet Transform (TQWT) is proposed to handle with the binary-class motor imagery EEGs. Firstly, the TQWT is utilized to decompose the filtered EEG signal. Then, several sub-band signals are extracted and followed by calculating their energy, AutoRegressive (AR) model coefficients and fractal dimension. Finally, a Linear Discriminant Analysis (LDA) classifier is used to classify these EEGs. Two Graz datasets of BCI Competition 2003 and 2005 are employed to verify the proposed method. The maximum accuracy of classifying EEGs of four subjects is 88.11%, 89.33%, 77.13% and 78.80%, respectively, and the maximum mutual information is 0.95, 0.96, 0.43 and 0.45. The high accuracies and mutual information demonstrate eventually the effectiveness of the proposed method.
-
表 1 不同受試者采用單一特征和組合特征所得平均識別率及最高識別率
受試者 特征組合 平均識別率(%) 最高識別率(%) F1 81.74 86.44 F2 80.95 85.66 F3 67.93 73.38 S1 F1+F2 86.16 86.90 F1+F3 84.76 85.47 F2+F3 85.03 86.89 F1+F2+F3 86.45 88.11 F1 84.20 89.04 F2 76.52 81.06 F3 55.87 61.20 S2 F1+F2 87.85 89.30 F1+F3 87.63 88.59 F2+F3 80.22 81.33 F1+F2+F3 87.96 89.33 F1 66.08 71.46 F2 66.30 68.93 F3 55.16 58.92 S3 F1+F2 75.61 76.99 F1+F3 71.40 73.08 F2+F3 71.49 72.72 F1+F2+F3 74.70 77.13 F1 73.24 77.87 F2 69.10 74.60 F3 52.36 58.34 S4 F1+F2 77.65 78.79 F1+F3 76.14 77.24 F2+F3 74.06 75.25 F1+F2+F3 76.73 78.80 下載: 導出CSV
下載: 導出CSV
下載: 導出CSV
表 5 本文方法的時耗統(tǒng)計(s)
TQWT過程 能量特征 AR系數(shù)特征 分形維數(shù)特征 分類 總時間 S1 0.0010 0.0012 0.0016 0.0559 0.0174 0.0771 S2 0.0022 0.0010 0.0015 0.0536 0.0166 0.0749 S3 0.0012 0.0010 0.0016 0.0533 0.0163 0.0734 S4 0.0014 0.0015 0.0018 0.0547 0.0171 0.0765 下載: 導出CSV
-
佘青山, 陳希豪, 高發(fā)榮. 基于感興趣腦區(qū)LASSO-Granger因果關(guān)系的腦電特征提取算法[J]. 電子與信息學報, 2016, 38(5): 1266–1270. doi: 10.11999/JEIT150851SHE Qingshan, CHEN Xihao, and GAO Farong. Feature extraction of electroencephalography based on LASSO-Granger causality between brain region of interest[J]. Journal of Electronics &Information Technology, 2016, 38(5): 1266–1270. doi: 10.11999/JEIT150851 BALCONI M and MAZZA G. Brain oscillations and BIS/BAS (behavioral inhibition/activation system) effects on processing masked emotional cues. ERS/ERD and coherence measures of alpha band[J]. International Journal of Psychophysiology, 2009, 74(2): 158–165. doi: 10.1016/j.ijpsycho.2009.08.006 呂俊, 謝勝利, 章晉龍. 腦-機接口中基于ERS/ERD的自適應空間濾波算法[J]. 電子與信息學報, 2009, 31(2): 314–318.LV Jun, XIE Shengli, and ZHANG Jinlong. Adaptive spatial filter based on ERD/ERS for brain-computer interfaces[J]. Journal of Electronics &Information Technology, 2009, 31(2): 314–318. 陳強, 陳勛, 余鳳瓊. 基于獨立向量分析的腦電信號中肌電偽跡的去除方法[J]. 電子與信息學報, 2016, 38(11): 2840–2847. doi: 10.11999/JEIT160209CHEN Qiang, CHEN Xun, and YU Fengqiong. Removal of muscle artifact from EEG data based on independent vector analysis[J]. Journal of Electronics &Information Technology, 2016, 38(11): 2840–2847. doi: 10.11999/JEIT160209 CHEN Minyou, FANG Yonghui, and ZHENG Xufei. Phase space reconstruction for improving the classification of single trial EEG[J]. Biomedical Signal Processing & Control, 2014, 11(1): 10–16. doi: 10.1016/j.bspc.2014.02.002 HAMID M and ZABIHOLLAH S M. Improvement of EEG-based motor imagery classification using ring topology-based particle swarm optimization[J]. Biomedical Signal Processing & Control, 2017, 32: 69–75. doi: 10.1016/j.bspc.2016.10.015 PATTNAIK S, DASH M, and SABUT S K. DWT-based feature extraction and classification for motor imaginary EEG signals[C]. International Conference on Systems in Medicine and Biology, Kharagpur, India, 2016: 186–201. 徐佳琳, 左國坤. 基于互信息與主成分分析的運動想象腦電特征選擇算法[J]. 生物醫(yī)學工程學雜志, 2016, 33(2): 201–207. doi: 10.7507/1001-5515.20160036XU Jialin and ZUO Guokun. Motor imagery electroencephalogram feature selection algorithm based on mutual information and principal component analysis[J]. Journal of Biomedical Engineering, 2016, 33(2): 201–207. doi: 10.7507/1001-5515.20160036 羅志增, 周鎮(zhèn)定, 周瑛. 雙樹復小波特征在運動想象腦電識別中的應用[J]. 傳感技術(shù)學報, 2014, 27(5): 575–580. doi: 10.3969/j.issn.1004-1699.2014.05.001LUO Zhizeng, ZHOU Zhending, and ZHOU Ying. The application of DTCWT feature in recognition of motor imagery[J]. Journal of Sensors and Actuators, 2014, 27(5): 575–580. doi: 10.3969/j.issn.1004-1699.2014.05.001 周瑛. 虛擬場景下運動想象腦電信號識別研究[D]. [碩士論文], 杭州電子科技大學, 2013.ZHOU Ying. The research of motor imagery recognition in virtual reality[D]. [Master dissertation], Hangzhou Dianzi University, 2013. AL-QAZZAZ N K, HAMID B M A S, AHMAD S A, et al. Automatic artifact removal in EEG of normal and demented individuals using ICA-WT during working memory tasks[J]. Sensors, 2017, 17(6): 1–25. doi: 10.3390/s17061326 GHORBANIAN P, DEVILBISS D M, VERMA A, et al. Identification of resting and active state EEG features of Alzheimer’s disease using discrete wavelet transform[J]. Annals of Biomedical Engineering, 2013, 41(6): 1243–1257. doi: 10.1007/s10439-013-0795-5 HASSAN A R and BHUIYAN M I H. An automated method for sleep staging from EEG signals using normal inverse Gaussian parameters and adaptive boosting[J]. Neurocomputing, 2017, 219: 76–87. doi: 10.1016/j.neucom.2016.09.011 BENJAMIN B. BCI Competition II[OL]. http://www.bbci.de/competition/ii/, 2003. BENJAMIN B. BCI Competition III[OL]. http://www.bbci.de/competition/iii/, 2005. VIDAURRE C, SCHLOGL A, CABEZA R, et al. A fully on-line adaptive BCI[J]. IEEE Transactions on Biomedical Engineering, 2006, 53(6): 1214–1219. doi: 10.1109/TBME.2006.873542 BAYRAM I and SELESNICK I W. Frequency-domain design of overcomplete rational-dilation wavelet transforms[J]. IEEE Transactions on Signal Processing, 2009, 57(8): 2957–2972. doi: 10.1109/TSP.2009.2020756 IVAN S. Tunable Q-factor wavelet transform[OL]. http://eeweb.poly.edu/iselesni/TQWT/index.html, 2016. SELESNICK I W. Wavelet transform with tunable Q-factor[J]. IEEE Transactions on Signal Processing, 2011, 59(8): 3560–3575. doi: 10.1109/TSP.2011.2143711 AMIN H U, MALIK A S, AHMAD R F, et al. Feature extraction and classification for EEG signals using wavelet transform and machine learning techniques[J]. Australasian Physical & Engineering Sciences in Medicine, 2015, 38(1): 139–149. doi: 10.1007/s13246-015-0333-x LAWHERN V, HAIRSTON W D, MCDOWELL K, et al. Detection and classification of subject-generated artifacts in EEG signals using autoregressive models[J]. Journal of Neuroscience Methods, 2012, 208(2): 181–189. doi: 10.1016/j.jneumeth.2012.05.017 PHOTHISONOTHAI M and NAKAGAWA M. EEG-based classification of motor imagery tasks using fractal dimension and neural network for brain-computer interface[J]. IEICE Transactions on Information and Systems, 2008, 91(1): 44–53. doi: 10.1093/ietisy/e91-d.1.44 訾艷陽, 胥永剛, 何正嘉. 離散振動信號分形盒維數(shù)的改進算法和應用[J]. 機械科學與技術(shù), 2001(3): 373–376. doi: 10.3321/j.issn:1003-8728.2001.03.021ZI Yanyang, XU Yonggang, and HE Zhengjia. Fractal box dimension of discrete vibration signals[J]. Mechanical Science and Technology for Aerospace Engineering, 2001(3): 373–376. doi: 10.3321/j.issn:1003-8728.2001.03.021 GUPTA S and SAINI H. EEG features extraction using PCA plus LDA approach based on L1-norm for motor imaginary classification[C]. IEEE International Conference on Computational Intelligence and Computing Research, Coimbatore, India, 2015: 1–5. SCHLOGL A, KEINRATH C, SCHERER R, et al. Information transfer of an EEG-based brain computer interface[C]. International IEEE EMBS Conference on Neural Engineering, Capri Island, Italy, 2003: 641–644. FELE-ZORZ G, KAVSEK G, NOVAK-ANTOLIC Z, et al. A comparison of various linear and non-linear signal processing techniques to separate uterine EMG records of term and pre-term delivery groups[J]. Medical & Biological Engineering & Computing, 2008, 46(9): 911–922. doi: 10.1007/s11517-008-0350-y -