低軸間耦合的MEMS三維電場傳感器
doi: 10.11999/JEIT171188
-
1.
中國科學(xué)院電子學(xué)研究所傳感器技術(shù)國家重點(diǎn)實(shí)驗(yàn)室 ??北京 ??100190
-
2.
中國科學(xué)院大學(xué) ??北京 ??100049
MEMS-based Three-dimensional Electric Field Sensor with Low Cross-axis Coupling Interference
-
1.
State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China
-
2.
University of Chinese Academy of Sciences, Beijing 100049, China
-
摘要: 軸間耦合干擾是影響3維電場傳感器測量準(zhǔn)確性的重要因素。該文提出了一種低耦合干擾的MEMS 1維電場敏感芯片,并將3個(gè)上述的芯片正交組合研制出一款低軸間耦合的MEMS 3維電場傳感器。不同于已見報(bào)道的測量垂直方向電場分量的MEMS 1維電場敏感芯片,該文提出的芯片采用軸對稱設(shè)計(jì),在差分電路的配合下能夠測量垂直于對稱軸方向的面內(nèi)電場分量,并能夠消除正交于測量軸方向的電場分量的耦合干擾。該MEMS 3維電場傳感器具尺寸小和集成度高等優(yōu)點(diǎn)。實(shí)驗(yàn)結(jié)果表明在0~120 kV/m電場強(qiáng)度范圍內(nèi),該MEMS 3維電場傳感器的軸間耦合靈敏度小于3.48%,3維電場測量誤差小于7.13%。Abstract: Cross-axis coupling interference influences greatly the measurement accuracy of Three-Dimensional (3D) Electric Field Sensor (EFS). A MEMS-based One-Dimensional (1D) Electric Field Microsensor (EFM) chip with low coupling interference is presented, and a MEMS-based 3D EFS with low cross-axis coupling interference is developed by arranging three 1D EFM chips orthogonally. Different from previously reported 1D EFM chips sensitive to perpendicular electric field component, the proposed 1D EFM chip is designed to be symmetrical and connected to difference circuit, so that it is capable of sensing parallel electric field component perpendicular to axis of symmetry and eliminating coupling interference. The proposed 3D EFS has the advantages of small size and high integration. Experimental results reveal that in the range of 0~120 kV/m, the cross-axis sensitivities are within 3.48%, and the total measurement errors of this 3D EFS are within 7.13%.
-
表 1 1 維電場敏感芯片的關(guān)鍵參數(shù)
結(jié)構(gòu)參數(shù) 參數(shù)值 感應(yīng)電極寬度wsn 8 μm 屏蔽電極寬度wsh 10 μm 感應(yīng)電極與屏蔽電極的間距(平衡位置)g 15 μm 相鄰的兩個(gè)感應(yīng)電極的間距W 95 μm 感應(yīng)電極長度Lsn 1030 μm 屏蔽電極長度Lsh 1045 μm 結(jié)構(gòu)厚度 $\tau $ 25 μm 襯底厚度h 300 μm 感應(yīng)電極數(shù)量Ne 14×2 梳齒數(shù)量Nd 84×20 諧振結(jié)構(gòu)質(zhì)量meff 4.4×10–5 g 等效彈性系數(shù)kq 11.3 N/m 下載: 導(dǎo)出CSV
表 2 X軸,Y軸和Z軸1維電場敏感芯片的靈敏度
電場方向 X軸1維電場敏感芯片的靈敏度
(mV·m/kV)Y軸1維電場敏感芯片的靈敏度
(mV·m/kV)Z軸1維電場敏感芯片的靈敏度
(mV·m/kV)沿X軸 0.293 0.001 0.008 沿Y軸 0.011 0.316 0.007 沿Z軸 0.008 0 0.287 下載: 導(dǎo)出CSV
表 3 3 維電場傳感器在空間作不同角旋轉(zhuǎn)的輸出與計(jì)算電場
旋轉(zhuǎn)角度 施加電場(kV/m) X軸1維電場敏感芯片
的輸出(mV)Y軸1維電場敏感芯片
的輸出(mV)Z軸1維電場敏感芯片
的輸出(mV)合成電場(kV/m) 誤差(%) $\theta $1 50 0.01 8.67 12.08 49.77 0.46 100 0.01 17.51 24.35 100.40 0.40 $\theta $2 50 0.01 13.97 6.86 49.84 0.32 100 0.04 27.74 13.99 99.56 0.44 $\theta $3 50 0.03 –10.08 –11.63 51.08 2.16 100 0.05 –20.50 –22.84 101.67 1.67 $\theta $4 50 2.56 –13.02 8.57 52.21 4.42 100 5.22 –26.73 15.99 104.02 4.02 $\theta $5 50 –8.67 9.77 8.49 53.30 6.60 100 –16.94 19.32 17.84 107.13 7.13 下載: 導(dǎo)出CSV
-
羅福山. 雷擊飛行器事件與美國航天活動的發(fā)射規(guī)范[J]. 中國航天, 1993, 1:27-29.LUO Fushan. The events of lightning strikes spacecraft and the criteria of the spacecraft launches of aerospace maneuver of USA[J]. Aerospace China, 1993, 1: 27-29. ZENG Qingfeng, WANG Zhenhui, GUO Fengxia, et al. The application of lightning forecasting based on surface electrostatic field observations and radar data[J]. Journal of Electrostatics, 2013, 71(1):6-13. DOI: 10.1016/j.elstat.2012.10.007. MARUVADA P S, DALLARIE R D, and PEDNEAULT R. Development of field-mill instruments for ground-level and above-ground electric field measurement under HVDC transmission lines[J]. IEEE Transactions on Power Apparatus and Systems, 1983, 102(3): 738-744. DOI: 10.1109/TPAS.1983.318035. VAILLANCOURT G H, CARIGNAN S, and JEAN C. Experience with the detection of faulty composite insulators on high-voltage power lines by the electric field measurement method[J]. IEEE Transactions on Power Delivery, 1998, 13(2): 661-666. DOI: 10.1109/61.660958. RIEHL P S, SCOTT K L, MULLER R S, et al. Electrostatic charge and field sensors based on micromechanical resonators[J]. Journal of Microelectromechanical Systems, 2003, 12(5): 577-589. DOI: 10.1109/JMEMS.2003.818066. PENG Chunrong, CHEN Xianxiang, YE Cao, et al. Design and testing of a micromechanical resonant electrostatic field sensor[J]. Journal of Micromechanics and Microengineering, 2006, 16(5): 914-919. DOI: 10.1088/0960-1317/16/5/006. CHEN Xianxiang, PENG Chunrong, TAO Hu, et al. Thermally driven micro-electrostatic fieldmeter[J]. Sensors and Actuators A: Physical, 2006, 132(2): 677-682. DOI: 10.1016/j.sna.2006.02.044. KOBAYASHI T, OYAMA S, MAKIMOTO N, et al. An electrostatic field sensor operated by self-excited vibration of MEMS-based self-sensitive piezoelectric microcantilevers[J]. Sensors and Actuators A: Physical, 2013, 198: 87-90. DOI: 10.1016/j.sna.2013.04.016. YANG Pengfei, PENG Chunrong, FANG Dongming, et al. Design, fabrication and application of an SOI-based resonant electric field microsensor with coplanar comb-shaped electrodes[J]. Journal of Micromechanics and Microengineering, 2013, 23(5): 1-8. DOI: 10.1088/0960-1317/23/5/055002. RONCIN A, SHAFAI C, and SWATEK D R. Electric field sensor using electrostatic force deflection of a micro-spring supported membrane[J]. Sensors and Actuators A: Physical, 2005, 123: 179-184. DOI: 10.1016/j.sna.2005.02.018. CHEN T, SHAFAI C, RAJAPAKSE A, et al. Micromachined ac/dc electric field sensor with modulated sensitivity[J]. Sensors and Actuators A: Physical, 2016, 245: 76-184. DOI: 10.1016/j.sna.2016.04.054. WILLIAMS K, BRUYKER D, LIMB S, et al. Vacuum steered-electron electric-field sensor[J]. Journal of Microelectromechanical Systems, 2014, 23(1): 157-167. DOI: 10.1109/JMEMS.2013.2262924. MOHAMMED Z, GILL W A, and RASRAS M. Double-comb-finger design to eliminate cross-axis sensitivity in a dual-axis accelerometer[J]. IEEE Sensors Letters, 2017, 1(5): 1-4. DOI: 10.1109/LSENS.2017.2756108. 方奕庚, 彭春榮, 方東明, 等. 微型折疊式三維電場傳感器[J]. 傳感器與微系統(tǒng), 2016, 35(5): 67-69. DOI: 10.13873/J.1000-9787(2016)05-0067-03.FANG Yigeng, PENG Chunrong, FANG Dongming, et al. Micro 3-dimensional folding electric field sensor[J]. Transducer and Microsystem Technologies, 2016, 35(5): 67-69. DOI: 10.13873/J.1000-9787(2016)05-0067-03. 聞小龍, 彭春榮, 方東明, 等. 基于共面去耦結(jié)構(gòu)的空間三維電場測量方法[J]. 電子與信息學(xué)報(bào), 2014, 36(10): 2504-2508. DOI: 10.3724/SP.J.1146.2013.01921.WEN Xiaolong, PENG Chunrong, FANG Dongming, et al. Measuring method of three dimensional atmospheric electric field based on coplanar decoupling structure[J]. Journal of Electronics & Information Technology, 2014, 36(10): 2504-2508. DOI: 10.3724/SP.J.1146.2013.01921. 李冰, 彭春榮, 凌必赟, 等. 基于遺傳算法的三維電場傳感器解耦標(biāo)定方法研究[J]. 電子與信息學(xué)報(bào), 2017, 39(9): 2252-2258. DOI: 10.11999/JEIT161277.LI Bing, PENG Chunrong, LING Biyun, et al. The decoupling calibration method based on genetic algorithm of three dimensional electric field sensor[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2252-2258. DOI: 10.11999/JEIT161277. LING Biyun, WANG Yu, PENG Chunrong, et al. Single-chip 3D electric field microsensor[J]. Frontiers of Mechanical Engineering, 2017, 12(4): 581-590. DOI: 10.1007/s11465-017-0454-x. -