短脈沖非相參雷達(dá)的補(bǔ)償相參處理方法研究
doi: 10.11999/JEIT171147
-
西北核技術(shù)研究所高功率微波技術(shù)重點(diǎn)實(shí)驗(yàn)室 ??西安 ??710024
Compensative Coherent Processing Algorithm for Short Pulse Non-coherent Radar
-
Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi’an 710024, China
-
摘要: 為了對(duì)短脈沖非相參雷達(dá)信號(hào)進(jìn)行相參處理,該文根據(jù)其信號(hào)特征,建立了參數(shù)化信號(hào)模型。分析了信號(hào)非相參因素,提出了以匹配濾波和參數(shù)估計(jì)為基礎(chǔ)的補(bǔ)償相參處理算法。通過理論推導(dǎo)證明了對(duì)點(diǎn)目標(biāo)進(jìn)行補(bǔ)償相參處理的可行性。并對(duì)距離擴(kuò)展目標(biāo)進(jìn)行了理論分析,推導(dǎo)出其獲得近似的補(bǔ)償相參增益所需要滿足的條件。并通過仿真驗(yàn)證了理論分析結(jié)果。
-
關(guān)鍵詞:
- 短脈沖非相參雷達(dá) /
- 補(bǔ)償相參 /
- 參數(shù)估計(jì)
Abstract: Based on the characteristics of short pulse non-coherent radar, the parameterized signal model is established. By analysis on the reasons of no-coherence, compensative coherent processing algorithm based on matching filter and parameter estimation is proposed. The rationality of the compensative coherent processing is proved by the mathematical derivation as to single point target. Then, requirement for the range extended target is analyzed in theory, in the condition of approximate compensative coherent processing. Finally, the theoretical analysis results are verified by simulation. -
表 1 補(bǔ)償相參積累的信噪比增益與理論值比較
M 理論值(dB) 仿真估計(jì)值(dB) 點(diǎn)目標(biāo) 距離擴(kuò)展目標(biāo) 2 3.01 3.13 2.06 3 4.77 4.52 4.08 5 6.99 6.61 5.36 10 10.00 10.11 9.85 20 13.01 12.92 12.27 50 16.99 17.00 16.39 100 20.00 19.95 19.49 下載: 導(dǎo)出CSV
-
胡銀福, 馮進(jìn)軍.用于雷達(dá)的新型真空電子器件[J]. 雷達(dá)學(xué)報(bào), 2016, 5(4):350–360. DOI: 10.12000/JR16078HU Yinfu and FENG Jinjun. New vacuum electronic devices for radar[J]. Journal of Radar, 2016, 5(4):350–360. DOI: 10.12000/JR16078 錢寶良.國(guó)外高功率微波技術(shù)的研究現(xiàn)狀與發(fā)展趨勢(shì)[J]. 真空電子技術(shù), 2015, 4(2):2–7. DOI: 10.16540/j.cnki.cn11-2485/tn.2015.02.001QIAN Baoliang. The research status and developing tendency of high power microwave technology in foreign countries[J]. Vacuum Electronics, 2015, 4(2): 2–7. DOI: 10.16540/j.cnki.cn11-2485/tn.2015.02.001 XIAO Renzhen, ZHANG Zhiqiang, LIANG Tiezhu, et al. A relativistic backward wave oscillator for directly generating circularly polarized TE11 mode[J]. Physics of Plasmas, 2016, 23(3):554–562.DOI: 10.1063/1.4944915 BLYAKHMAN A B, DAVID C, ROGER W H, et al. Nanosecond giga-watt radar: Indication of small targets moving among heavy clutter[C]. 2007 IEEE Radar Conference, Boston, USA, 2007: 61–64. doi: 10.1109/RADAR.2007.374191. BLYAKHMAN A B, CLUNIE D, MESIATS G, et al. Analysis of nanosecond gigawatt radar[C]. Quasi-Optical Control of Intense Microwave Transmission, Netherlands, 2005: 283–296. doi: 10.1007/1-4020-3638-8_21. RYSKIN N M and TITOV V N. Phase locking and mode switching in a backward-wave oscillator with reflections[J]. IEEE Transactions on Plasma Science, 2016, 44(8):1270–1275.DOI: 10.1109/TPS.2016.2517002 SONG Wei, ZHANG Xiaowei, CHEN Changhua, et al. Enhancing frequency-tuning ability of an improved relativistic backward-wave oscillator[J]. IEEE Transactions on Electron Devices, 201360(1): 494–497. DOI: 10.1109/TED.2012.2230400 王樂, 周子超, 李春化. 提高非相參雷達(dá)發(fā)射信號(hào)相干性的研究[J]. 火控雷達(dá)技術(shù), 2012, 41(2): 30–33WANG Le, ZHOU Zhichao, and LI Chunhua. Study on improving coherence of non-coherent radar transmitting signal[J]. Fire Control Radar Technology, 2012,41(2):30–33 Trapp R L. Improved coherent-on-receive radar processing with dynamic transversal filters[C]. Proceedings of the IEEE International Radar Conferenc, London, 1982: 505–508. 丁建江, 張賢達(dá). 接收相干處理算法的分析與評(píng)述[J]. 系統(tǒng)工程與電子技術(shù), 2002, 24(11): 25–28DING Jianjiang and ZHANG Xianda. Analysis and discussions on the coherent-on-receive processing arithmetic[J]. Systems Engineering and Electronics , 2002, 24(11):25–28 ZHOU Ruixue, XIA Guifen, ZHAO Yue , et al. Coherent signal processing method for frequency-agile radar[C]. IEEE International Conference on Electronic Measurement & Instruments, Qingdao, China, 2015: 431–434. doi: 10.1109/ICEMI.2015.7494227. GAO Jing, Li F, WANG Chao , et al. ISAR motion compensation based on matching pursuit with Chebyshev polynomials under low SNR[C]. IEEE International Conference on Signal Processing, Communications and Computing, Hong Kong, China, 2016: 1–5. doi: 10.1109/ICSPCC.2016.7753674. CHEN Yichang, LI Gang, Zhang Qingjun, et al. Motion Compensation for airborne SAR via parametric sparse representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(1):551–562. DOI: 10.1109/TGRS.2016.2611522 田超, 文樹梁.基于非均勻FFT的長(zhǎng)時(shí)間相參積累算法[J].電子與信息學(xué)報(bào), 2014, 36(6):1374–1380 DOI: 10.3724/SP.J.1146.2013.01264TIAN Chao and WEN Shuliang. A long-term coherent integration algorithm based on non-uniform fast Fourier transform[J]. Journal of Electronics & Information Technology , 2014, 36(6): 1374–1380 DOI: 10.3724/SP.J.1146.2013.01264 ZOU Yongqiang, GAO Xunzhang, and LI Xiang. A sparse representation and GTD model parameter estimation based multiband radar signal coherent compensation method[C]. 2016 CIE International Conference on Radar, Guangzhou, China, 2016: 1–4. doi: 10.1109/RADAR.2016.8059305. 黃培康, 殷紅成, 許小劍. 雷達(dá)目標(biāo)特性[M]. 北京: 電子工業(yè)出版社, 2010: 229–283.HUANG Peikang, YIN Hongcheng, and XU Xiaojian. Radar Target Character[M]. Bejing: Publishing House of Electronics Industry, 2010: 229–283. GUAN Yin, GONG, Shuxi, ZHANG Shuai, et al. Improved time-domain physical optics for transient scattering analysis of electrically large conducting targets[J]. IET Microwaves, Antennas and Propagation , 2011, 5(5):625–629. DOI: 10.1049/iet-map.2010.0277 -