個(gè)性化搜索中一種基于位置服務(wù)的隱私保護(hù)方法
doi: 10.11999/JEIT171137
-
1.
中南大學(xué)信息科學(xué)與工程學(xué)院 ??長沙 ??410083
-
2.
廣州大學(xué)計(jì)算機(jī)科學(xué)與教育軟件學(xué)院 ??廣州 ??510006
Privacy Preserving Method Based on Location Service in Personalized Search
-
1.
School of Information Science and Engineering, Central South University, Changsha 410083, China
-
2.
School of Computer Science and Educational Software, Guangzhou University, Guangzhou 510006, China
-
摘要: 在基于位置服務(wù)的個(gè)性化搜索中,利用可信第三方服務(wù)器以及對等節(jié)點(diǎn)是保護(hù)用戶隱私的主要方法,但在現(xiàn)實(shí)生活中,它們卻是不完全可信的。為了解決這一問題,該文提出一種個(gè)性化搜索中基于位置服務(wù)的隱私保護(hù)方法。該方法通過轉(zhuǎn)換用戶的位置信息,并根據(jù)用戶的查詢類型生成用戶模型,進(jìn)而形成帶有用戶位置信息的查詢矩陣,然后利用矩陣加密用戶的查詢,隱藏查詢矩陣中的用戶信息,最后根據(jù)安全內(nèi)積計(jì)算返回相關(guān)性得分最高的前K個(gè)查詢文件給用戶。安全性分析表明該方法能有效地保護(hù)用戶的查詢隱私和位置隱私,通過分析與實(shí)驗(yàn)表明,該方法大幅度地縮短了索引構(gòu)建時(shí)間,降低了通信開銷,同時(shí)為用戶提供了基于位置的個(gè)性化搜索結(jié)果,一定程度上解決了移動設(shè)備屏幕小帶來的弊端。
-
關(guān)鍵詞:
- 隱私保護(hù) /
- 個(gè)性化搜索 /
- 位置轉(zhuǎn)換 /
- 安全內(nèi)積計(jì)算
Abstract: For personalized search based on location service, the trusted third-party server and peer node are used as the main method for privacy preserving. However, entirely trusted third-party server or peer node does not exist in real life. In order to address this problem, a method of privacy preserving on the location of mobile users is proposed when using personalized search. The method is used to convert the user’s location information into distance information and generate the user model according to the user’s query type, forming a query matrix with user location information, then the matrix is used to encrypt the user’s query and conceal the user information in the query matrix. Finally, according to the calculation of the security inner product, the K file with the highest relevance score is returned to the user. It is evident from the security analysis that the proposed method can effectively protect the user’s query privacy and location privacy. The analysis and experimental results show that the proposed method can greatly shorten the time of index construction and reduce the communication overhead. While providing users with location based personalized search results, the method is able to remedy the defects of small-screen mobile devices.-
Key words:
- Privacy preserving /
- Personalized search /
- Location conversion /
- Security inner product
-
表 1 該文中的相關(guān)符號描述
符號 描述 符號 描述 SK 密鑰 $K$ 用戶提交的參數(shù) $K$ ${{p}}$ 明文索引 $a$ 大于0的隨機(jī)數(shù) ${{I}}$ 加密后的索引 ${{R}}(i,:)$ 與第 $i$個(gè)文件的相關(guān)性得分 $C$ 加密后的文件 ${{s}}$ 分裂指示器 ${{q}}$ 用戶模型或用戶查詢 $h$ 字典中的總關(guān)鍵詞數(shù) ${{U}}$ 用戶模型 $m$ 文件數(shù)量 ${{T}}$ 加密后的查詢矩陣 ${{G}}$ 查詢點(diǎn)的綜合評分矩陣 $n$ 真實(shí)的關(guān)鍵詞數(shù) $t$ 隨機(jī)生成的關(guān)鍵詞數(shù) 下載: 導(dǎo)出CSV
表 2 索引構(gòu)建過程
算法 索引構(gòu)建過程 輸入: ${{G}},{{s}},m,{{M}}_1^{\rm{T}},{{M}}_2^{\rm{T}}$ 輸出: ${{I}}$ (1) $p={\rm{diag}}({G});$ (2) $h = n + t;$ (3) ${{tp}} = {\rm{rand(1,1)*ones(1,}}t{\rm{);}}$ (4) for $i = 1:m$ do (5) ${{{p}}^ * }(i,:) = [{{p}}(i,:){\rm{ }}{{tp}}];$ (6) ${{r}} = {\rm{rand}}(1,h);$ (7) for $j = 1:h$ do (8) if ${{s}}(j) = = 1$ then (9) ${{p}}'(i,j) = {{r}}(1,j);$ (10) ${{p}}''(i,j) = {{{p}}^ * }(i,j) - {{p}}'(i,j);$ (11) else (12) ${{p}}'(i,j) = {{p}}''(i,j) = {{{p}}^ * }(i,j);$ (13) end if (14) end for (15) end for (16) ${{I}} = [{{p}}'{{M}}_1^{\rm{T}},{{p}}''{{M}}_2^{\rm{T}}]$ (17) return ${{I}}$ 下載: 導(dǎo)出CSV
-
LU Rongxing, LIN Xiaodong, LIANG Xiaohui, et al.. A dynamic privacy-preserving key management scheme for location-based services in VANETs[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(1): 127–139. DOI: 10.1109/TITS.2011.2164068. YU Rong, KANG Jiawen, HUANG Xumin, et al.. MixGroup: Accumulative pseudonym exchanging for location privacy enhancement in vehicular social networks[J]. IEEE Transactions on Dependable and Secure Computing, 2016, 13(1): 93–105. DOI: 10.1109/TDSC.2015.2399291. 張少波, 劉琴, 王國軍. 基于網(wǎng)格標(biāo)識匹配的位置隱私保護(hù)方法[J]. 電子與信息學(xué)報(bào), 2016, 38(9): 2173–2179. DOI: 10.11999/JEIT160350.ZHANG Shaobo, LIU Qin, and WANG Guojun. The method of location privacy protection based on grid identifier matching[J]. Journal of Electronics & Information Technology, 2016, 38(9): 2173–2179. DOI: 10.11999/JEIT160350. DU Qing, XIE Haoran, CAI Yi, et al.. Folksonomy-based personalized search by hybrid user profiles in multiple levels[J]. Neurocomputing, 2016, 204(C): 142–152. DOI: 10.1016/j.neucom.2015.10.135. ZHOU Dong, WU Xuan, ZHAO Wenyu, et al.. Query expansion with enriched user profiles for personalized search utilizing folksonomy data[J]. IEEE Transactions on Knowledge & Data Engineering, 2017, 29(7): 1536–1548. DOI: 10.1109/TKDE.2017.2668419. PENG Tao, LIU Qin, and WANG Guojun. Enhanced location privacy preserving scheme in location-based services [J]. IEEE Systems Journal, 2017, 11(1): 219–230. DOI: 10.1109/JSYST.2014.2354235. PAN Xiao, XU Jianliang, and MENG Xiaofeng. Protecting location privacy against location-dependent attacks in mobile services[J]. IEEE Transactions on Knowledge & Data Engineering, 2012, 24(8): 1506–1519. DOI: 10.1109/TKDE.2011.105. HWANG R H, HSUEH Y L, and CHUNG H W. A novel time-obfuscated algorithm for trajectory privacy protection [J]. IEEE Transactions on Services Computing, 2014, 7(2): 126–139. DOI: 10.1109/TSC.2013.55. NIU Ben, LI Qinghua, ZHU Xiaoyan, et al.. Enhancing privacy through caching in location-based services[C]. Proceedings of the IEEE Conference on Computer Communications (INFOCOM). Hong Kong, China, 2015: 1017–1025. CHOR B, GOLDREICH O, KUSHILEVITZ E, et al.. Private information retrieval[C]. Proceedings of the 36th Annual Symposium on Foundations of Computer Science, Washington, USA, 1995: 41–50. LI Xiangyang and JUNG T. Search me if you can: Privacy-preserving location query service[C]. Proceedings of the IEEE International Conference on Computer Communications (INFOCOM). Turin, Italy, 2013: 2760–2768. FU Zhangjie, REN Kui, SHU Jiangang, et al.. Enabling personalized search over encrypted outsourced data with efficiency improvement[J]. IEEE Transactions on Parallel & Distributed Systems, 2016, 27(9): 2546–2559. DOI: 10.1109/TPDS.2015.2506573. ZHAO Feng, YAN Fengwei, JIN Hai, et al.. Personalized mobile searching approach based on combining content-based filtering and collaborative filtering[J]. IEEE Systems Journal, 2017, 11(1): 324–332. DOI: 10.1109/JSYST.2015.2472996. LEUNG W T, LEE D L, and LEE W C. PMSE: A personalized mobile search engine[J]. IEEE Transactions on Knowledge & Data Engineering, 2013, 25(4): 820–834. DOI: 10.1109/TKDE.2012.23. WONG Waikit, CHEUNG W L, KAO Ben, et al. Secure kNN computation on encrypted databases[C]. ACM SIGMOD International Conference on Management of Data. ACM, Providence, USA, 2009: 139–152. 羅恩韜, 王國軍. 移動社交網(wǎng)絡(luò)中一種朋友發(fā)現(xiàn)的隱私安全保護(hù)策略[J]. 電子與信息學(xué)報(bào), 2016, 38(9): 2165–2172. DOI: 10.11999/JEIT151479.LUO Entao and WANG Guojun. A novel friends matching privacy preserving strategy in mobile social networks[J]. Journal of Electronics & Information Technology, 2016, 38(9): 2165–2172. DOI: 10.11999/JEIT151479. ZHANG Qiang, LIU Qin, and WANG Guojun. A privacy-preserving hybrid cooperative searching scheme over outsourced cloud data[C]. Security, Privacy, and Anonymity in Computation, Communication, and Storage. Zhangjiajie, China, 2016: 265–278. CAO Ning, WANG Cong, LI Ming, et al.. Privacy-preserving multi-keyword ranked search over encrypted cloud data[J]. IEEE Transactions on Parallel and Distributed Systems, 2014, 25(1): 222–233. DOI: 10.1109/TPDS.2013.45. -