基于防撞雷達(dá)的分集相控陣設(shè)計(jì)方法
doi: 10.11999/JEIT171121
-
1.
西北工業(yè)大學(xué)電子信息學(xué)院 ??西安 ??710072
-
2.
西安電子工程研究所 ??西安 ??710100
Design of the Diversity Phased Array Based on Collision Avoidance Radar
-
1.
School of Electronics and Information, Northwestern Polytechnical University, Xi’an 710072, China
-
2.
Xi’an Electronic Engineering Research Institute, Xi’an 710100, China
-
摘要: 常規(guī)相控陣?yán)走_(dá)通過(guò)移相發(fā)射空間合成的相參信號(hào)形成能量聚集的天線方向圖,由于收發(fā)天線復(fù)用因此所合成的天線孔徑要低于收發(fā)分置的MIMO雷達(dá)。該文首先通過(guò)理論推導(dǎo)MIMO雷達(dá)在探測(cè)性能上和相控陣?yán)走_(dá)的一致性及區(qū)別,指出MIMO雷達(dá)的實(shí)質(zhì)優(yōu)勢(shì)在于發(fā)射波束的數(shù)字賦形。然后設(shè)計(jì)一種基于防撞雷達(dá)的分集相控陣,發(fā)射端采用相控體制,接收端采用DBF數(shù)字波束形成,通過(guò)分析移相器位數(shù)對(duì)該雷達(dá)性能的約束,證明在指定波束指向上該雷達(dá)在避免產(chǎn)生正交信號(hào)的前提下能達(dá)到和MIMO雷達(dá)相同的虛擬孔徑性能。最后通過(guò)計(jì)算機(jī)仿真,驗(yàn)證該方法的有效性和可行性。采用該雷達(dá)體制在保證合成波束寬度的前提下,能有效降低接收通道數(shù),從而有效降低雷達(dá)成本并提高通道一致性。
-
關(guān)鍵詞:
- 分集相控陣 /
- 集中式MIMO雷達(dá) /
- 波形設(shè)計(jì) /
- 防撞雷達(dá)
Abstract: Conventional phased array radar transmits coherent signal to form antenna pattern. By transmitting and receiving antenna reuse its aperture is always less than MIMO radar. This paper firstly analyses the same points and the difference between MIMO radar and phased array radar. It further points out that the essential advantage of MIMO radar is the digital transmitting beam forming. Second it designs a diversity phased array radar in collision avoidance atmosphere. Its transmitting part uses phase array system, while the receiving part uses the Digital BeamForming (DBF). Through the analysis for the limitation of the digits phase shifter, it proves that this radar can achieve the same virtual aperture performance as MIMO radar, while the rader can avoid to produce the orthogonal signal. Finally through the computer simulation it verifies the feasibility and effectiveness of the method. This radar system can effectively reduce the cost and improve channel consistency under the premise of promised beam width. -
袁賽柏, 金勝, 朱天林. MIMO雷達(dá)技術(shù)發(fā)展綜述[J]. 現(xiàn)代雷達(dá), 2017, 39(8): 5–8. DOI: 10.16592/j.cnki.1004-7859.2017.08.002.YUAN Saibai, JIN Sheng, and ZHU Tianlin. The development review of MIMO radar technology[J]. Modern Radar, 2017, 39(8): 5–8. DOI: 10.16592/j.cnki.1004-7859.2017.08.002. HAMIOVICH A M, BLUM R S, and CIMINI L J. MIMO radar with widely separated antennas [J].IEEE Signal Processing Magazine, 2008, 25(1): 116–129. DOI: 10.1109/MSP.2008.4408448. FISHLER E, HAIMOVICH A, BLUM R, et al.. MIMO radar: An idea whose time has come[C]. Radar Conference, Philadelphia, USA, 2004: 71–78. doi: 10.1109/NRC.2004.1316398. 肖文書(shū), 張二偉. 密集MIMO雷達(dá)性能分析及實(shí)驗(yàn)驗(yàn)證[J].電子科技大學(xué)學(xué)報(bào), 2016, 45(1): 66–70. DOI: 10.3969/j.issn.1001-0548.2016.01.010.XIAO Wenshu and ZHANG Erwei. Performance analysis and experimental verification for co-located MIMO radar[J]. Journal of Univerdsty of Electronic Science and Techonology of China, 2016, 45(1): 66–70. DOI: 10.3969/j.issn.1001-0548.2016.01.010. DAUM F and HUANG J. MIMO radar: Snake oil or good idea?[J]. IEEE AES Magazine, 2009(5): 8–12. DOI: 10.1109/MAES.2009.5109947. BROOKNER E. MIMO radar demystified and where make sense to use[C]. 2014 IEEE Radar Conference. Cincinnati, USA: IEEE, 2014(10): 1–6. doi: 10.1109/RADAR.2014.7060413. 戴喜增, 彭應(yīng)寧, 湯俊. MIMO 雷達(dá)檢測(cè)性能[J].清華大學(xué)學(xué)報(bào)(自然科學(xué)版), 2007, 47(1): 88–91. DOI: 10.3321/j.issn: 1000-0054.2007.01.024.DAI Xizeng, PENG Yingning, and TANG Jun. Detection performance of MIMO radar[J]. Journal of Tsinghua University (Science and Technology), 2007, 47(1): 88–91. DOI: 10.3321/j.issn: 1000-0054.2007.01.024. WANG B, CUI G, and YI W. Polarimetric MIMO radar detection for correlated fluctuating targets[C]. Radar Conference. Lille, France: IEEE, 2014: 1229–1232. doi: 10.1109/RADAR.2014.6875785. 孫昱, 柳貴東, 付少波. 汽車(chē)防撞雷達(dá)系統(tǒng)設(shè)計(jì)[J]. 軍事交通學(xué)院學(xué)報(bào), 2015, 17(5): 90–93. DOI: 10.3969/j.issn.1674-2192.2015.05.022.SUN Yu, LIU Guidong, and FU Shaobo. Design for automotive anti-collision radar system[J]. Journal of Military Transportation University, 2015, 17(5): 90–93. DOI: 10.3969/j.issn.1674-2192.2015.05.022. 王元愷, 肖澤龍, 許建中, 等. 一種改進(jìn)的LFMCW雷達(dá)線性調(diào)頻序列波形[J]. 電子學(xué)報(bào), 2017, 45(6): 1288–1293. DOI: 10.3969/j.issn.0372-2212.2017.06.002.WANG Yuankai, XIAO Zelong, XU Jianzhong, et al.. A Modified Chirp sequence waveform for FMCW radar[J]. Acta Electronica Sinica, 2017, 45(6): 1288–1293. DOI: 10.3969/j.issn.0372-2212.2017.06.002. MEHMOOD A, YANNICK L, and PETER K. Hardware architecture of polyphase filter banks performing embedded resampling for software-defined radio front-ends [J]. ZTE Communications, 2012, 10(1): 54–63. MATTHIAS S and HANS O. Millimeter-wave-radar sensor based on a transceiver array for automotive applications [J]. IEEE Transactions on Microwave Theory and Techniques, 2008, 56(2): 261–269. DOI: 10.1109/TMTT.2007.914635. ABOULNASR H and SERGIY A. Phased-MIMO radar: A tradeoff between phased-array and mimo radars. [J] IEEE Transactions on Signal Processing. 2010, 58(6): 3137–3151. DOI: 10.1109/TSP.2010.2043976. CAO M Y, SERGIY A, and ABOULNASR H. Transmit array interpolation for DOA estimation via tensor decomposition in 2-D MIMO radar [J]. IEEE Transactions on Signal Processing, 2017, 65(19): 5225–5238. DOI: 10.1109/TSP.2017.2721904. UNZ H. Linear arrays with arbitrarily distributed elements[J]. IRE Transactions on Antennas and Propagation, 1960, 8(3): 222–223. DOI: 10.1109/TAP.1960.1144829. -