基于柱形拋物面天線的MIMO SAR研究
doi: 10.11999/JEIT171105
-
(中國科學(xué)院電子學(xué)研究所 北京 100190) ②(中國科學(xué)院大學(xué) 北京 100049)
國家重點(diǎn)研發(fā)計(jì)劃(2017YFB0502700),國家自然科學(xué)基金(61701479)
Investigation on Parabolic Cylinder Reflector Based MIMO SAR
-
(Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China)
The National Key Research and Development Project (2017YFB0502700), The National Natural Science Foundation of China (61701479)
-
摘要: 為了實(shí)現(xiàn)星載合成孔徑雷達(dá)(SAR)的高分辨率寬測繪帶成像,該文提出一種基于柱形拋物面天線的多發(fā)多收合成孔徑雷達(dá)系統(tǒng)(MIMO SAR)。根據(jù)對系統(tǒng)結(jié)構(gòu)和短偏移正交(STSO)發(fā)射波形的分析,該文給出該系統(tǒng)的具體處理方法?;谥螔佄锩嫣炀€易于在俯仰向形成高增益窄波束的優(yōu)勢,該系統(tǒng)能夠利用數(shù)字波束形成技術(shù)對不同波形回波數(shù)據(jù)進(jìn)行有效分離,從而獲取更多的方位向等效相位中心。通過方位向多通道數(shù)據(jù)重構(gòu)處理,成像場景回波數(shù)據(jù)可利用傳統(tǒng)成像算法進(jìn)行成像。仿真結(jié)果表明,該系統(tǒng)能夠確保MIMO SAR的成像質(zhì)量,并具有良好的成像性能。
-
關(guān)鍵詞:
- 合成孔徑雷達(dá) /
- 多發(fā)多收 /
- 柱形拋物面天線 /
- 數(shù)字波束形成
Abstract: To realize the high-resolution wide-swath mapping capability of spaceborne SAR, this paper presents a parabolic cylinder reflector based MIMO SAR system. According to the analysis of system configuration and Short-Term Shift-Orthogonal (STSO) transmitting waveforms, the specific processing method are elaborated. Taking advantage of parabolic characteristics in elevation, the narrow beams with high gain can be easily realized by the parabolic cylinder reflector. This facilitates the efficient separation of STSO transmitting waveforms by using the digital beam-forming technique, therefore, more azimuth equivalent phase centers can be obtained. After the multichannel reconstruction processing in azimuth, the echo signals from illuminated scene can be imaged by conventional imaging algorithms. The simulation results show that, the proposed system has satisfactory performance for MIMO SAR imaging.-
Key words:
- SAR /
- MIMO /
- Parabolic cylinder reflector /
- Digital BeamForming (DBF)
-
CUMMING I and WONG F. Digital Processing of Synthetic Aperture Radar Data Algorithms and Implementation[M]. Norwood, MA: Artech House, 2005: 3-15. FREEMAN A, JOHNSON W, HUNEYCUTT B, et al. The myth of the minimum SAR antenna area constraint[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(1): 320-324. doi: 10.1109/36.823926. SUESS M, GRAFMUELLER B, ZAHN R, et al. A novel high resolution, wide swath SAR system [C]. Proceedings of the International Geoscience and Remote Sensing Symposium, Sydney, 2001: 1013-1015. MOREIRA A, KRIEGER G, HAJNSEK I, et al. Tandem-L: A highly innovative bistatic SAR mission for global observation of dynamic processes on the Earth's surface[J]. IEEE Geoscience and Remote Sensing Magazine, 2015, 3(2): 8-23. doi: 10.1109/MGRS.2015.2437353. RINCON R, FATOYINBO T, OSMANOGLU B, et al. Development of NASAs next generation L-band digital beamforming synthetic aperture radar (DBSAR-2)[C]. Proceedings of EUSAR 2016, Hamburg, Germany, 2016: 1251-1254. HUBER S, VILLANO M, YOUNIS M, et al. Tandem-L: Design concepts for a next-generation Spaceborne SAR system[C]. Proceedings of EUSAR 2016, Hamburg, Germany, 2016: 1237-1241. YOUNIS M, ALMEIDA F, LOPEZ-DEKKER P, et al. Techniques and modes for multi-channel SAR instruments [C]. Proceedings of EUSAR 2016, Hamburg, Germany, 2016: 812-817. TRIDON D, BACHMANN M, ZAN F, et al. Tandem-L observation concept-contributions and challenges of systematic monitoring of earth system dynamics[C]. The 18th International Radar Symposium, Prague, Czech Republic, 2017: 1-9. KRIEGER G, ROMMEL T, and MOREIRA A. MIMO-SAR tomography[C]. Proceedings of EUSAR 2016, Hamburg, Germany, 2016: 91-96. LIU Feng, MU Shanxiang, LU Wanghan, et al. MIMO SAR waveform separation based on costas-LFM signal and co-arrays for maritime surveillance[J]. Chinese Journal of Electronics, 2017, 26(1): 211-217. doi: 10.1049/cje.2016.11. 015. YANG Dong, YANG Xi, TAN Xiaomin, et al. Ground moving target detection in MIMO-SAR system[C]. 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 2016: 1062-1065. KIM J, YOUNIS M, MOREIRA A, et al. Spaceborne MIMO synthetic aperture radar for multimodal operation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(5): 2453-2466. doi: 10.1109/TGRS.2014.2360148. WANG Wenqin. MIMO SAR OFDM chirp waveform diversity design with random matrix modulation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3): 1615-1625. doi: 10.1109/TGRS.2014.2346478. WANG Jie, CHEN Longyong, LIANG Xingdong, et al. Implementation of the OFDM chirp waveform on MIMO SAR systems[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(9): 5218-5228. doi: 10.1109/TGRS. 2015.2419271. WANG Jie, LIANG Xingdong, CHEN Longyong, et al. A novel space-time coding scheme used for MIMO-SAR systems [J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(7): 1556-1560. doi: 10.1109/LGRS.2015.2412961. JING Guobin, XING Mengdao, CHEN Jianlai, et al. A novel digital beam-forming (DBF) method for multi-modes MIMO SAR[C]. 2016 CIE International Conference on Radar, Guangzhou, China, 2016: 1-5. LI Taoyong, ZHANG Qun, WANG Kai, et al. A novel imaging method for airborne downward-looking 3D MIMO- SAR based on compressed sensing[C]. 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 2016: 5027-5030. LI Jian, STOICA P, and ZHENG Xiayu. Signal synthesis and receiver design for MIMO radar imaging[J]. IEEE Transactions on Signal Processing, 2008, 56(8): 3959-3968. doi: 10.1109/TSP.2008.923197. KRIEGER G, GEBERT N, and MOREIRA A. Multidimensional waveform encoding: A new digital beamforming technique for synthetic aperture radar remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1): 31-46. doi: 10.1109/TGRS.2007.905974. KRIEGER G, HUBER S, VILLANO M, et al. SIMO and MIMO system architectures and modes for high-resolution ultra-wide-swath SAR imaging[C]. Proceedings of EUSAR 2016, Hamburg, Germany, 2016: 187-192. KRIEGER G. MIMO-SAR: Opportunities and pitfalls[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2628-2645. doi: 10.1109/TGRS.2013.2263934. VAN T H L. Optimum Array Processing Part IV of Detection, Estimation, and Modulation Theory[M]. New York: John Wiley Sons, 2002: 428-669. -
計(jì)量
- 文章訪問數(shù): 1393
- HTML全文瀏覽量: 120
- PDF下載量: 81
- 被引次數(shù): 0