六邊形環(huán)復(fù)合吸波超材料性能的等效電路分析方法
doi: 10.11999/JEIT171103
-
1.
空軍預(yù)警學(xué)院六系 ??武漢 ??430019
-
2.
華中農(nóng)業(yè)大學(xué)理學(xué)院 ??武漢 ??430070
Equivalent Circuit Method for Hexagonal Loop Composite Absorbing Material
-
1.
No.6 Department, Air Force Early Warning Academy, Wuhan 430019, China
-
2.
College of Science, Huazhong Agricultural University, Wuhan 430070, China
-
摘要: 該文提出一種針對六邊形環(huán)復(fù)合吸波超材料吸波性能的等效電路分析方法?;诹呅苇h(huán)諧振特性建立了等效電路模型,通過對六邊形點陣分布的傅里葉分析,提出了等效分布周期參數(shù),給出了基于模型尺寸的RLC參數(shù)提取方法。與全波仿真結(jié)果比較,所提出的等效電路模型對分析多種尺寸的六邊形環(huán)復(fù)合吸波材料具有較好的適用性和準(zhǔn)確性。通過樣品制作和測量,進(jìn)一步驗證了該模型的有效性,最后實現(xiàn)了一款工作于1.7~5.7 GHz的寬帶雷達(dá)吸波材料。
-
關(guān)鍵詞:
- 復(fù)合吸波超材料 /
- 等效電路模型 /
- 六邊形環(huán) /
- 寬帶雷達(dá)吸波材料
Abstract: An equivalent circuit method of performance estimation for hexagonal loop composite absorbing metamaterial is proposed, and the corresponding equivalent circuit model is established. Based on the Fourier analysis of hexagonal lattice distribution, the equivalent distribution periodic parameter is proposed and the estimation method of RLC parameters is given according to the size of units. The applicability and accuracy of the equivalent circuit model for several structure dimensions are verified and compared with HFSS. A sample is fabricated and measured for further verification, which has a good broadband radar absorbing performance in 1.7~5.7 GHz. -
表 1 不同六邊形環(huán)周期p的ECM模型中等效電容電感
p (mm) 等效電容 (pF) 等效電感 (μH) 24.0 0.50 6.6 26.0 0.28 6.8 28.0 0.19 7.0 下載: 導(dǎo)出CSV
-
MUNK B A. Frequency Selective Surfaces: Theory and Design [M]. John Wiley & Sons, Inc., 2005: 1–46. 路寶, 龔書喜, 凌勁, 等. 一種新型頻率選擇表面及其在天線雷達(dá)散射截面減縮中的應(yīng)用 [J]. 電子與信息學(xué)報, 2010, 32(1): 199–202. DOI: 10.3724/SP.J.1146.2009.00046.LU Bao. GONG Shuxi, LIN Jin, et al. A novel frequency selective surface structure and its application to RCS reduction of antennas[J]. Journal of Electronics & Information Technology, 2010, 32(1): 199–202. DOI: 10.3724/SP.J.1146.2009.00046. JOOZDANI M Z, AMIRHOSSEINI M K, and ABDOLALI A. Wideband radar cross-section reduction of patch array antenna with miniaturised hexagonal loop frequency selective surface [J]. Electronics Letters, 2016, 52(9): 767–768. DOI: 10.1049/el.2016.0336. 周禹龍, 曹祥玉, 高軍, 等. 雙頻頻率選擇表面及其在微帶天線寬帶RCS減縮中的應(yīng)用 [J]. 電子與信息學(xué)報, 2017, 39(6): 1446–1451. DOI: 10.11999/JEIT160854.ZHOU Yulong, CAO Xiangyu, GAO Jun, et al.. Dualband frequncey selective surface and its application to wideband RCS reduction of the microstrip antenna[J]. Journal of Electronics & Information Technology, 2017, 39(6): 1446–1451. DOI: 10.11999/JEIT160854. RUVIO G, LEONE G, and MATTIELLO F. Analysis and characterization of finite-size curved frequency selective surfaces [J]. Studies in Engineering & Technology, 2015, 2(1): 9–21. DOI: 10.11114/set.v2i1.684. COSTA F, MONORCHIO A, and MANARA G. Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces [J]. IEEE Transactions on Antennas & Propagation, 2010, 58(5): 1551–1558. DOI: 10.1109/TAP.2010.2044329. COSTA F, MONORCHIO A, and MANARA G. Efficient analysis of frequency-selective surfaces by a simple equivalent-circuit model [J]. IEEE Antennas & Propagation Magazine, 2012, 54(4): 35–48. DOI: 10.1109/MAP.2012.6309153. LIU Tian and KIM S S. Design of wide-bandwidth electromagnetic wave absorbers using the inductance and capacitance of a square loop-frequency selective surface calculated from an equivalent circuit model [J]. Optics Communications, 2016, 359: 372–377. DOI: 10.1016/j.optcom. 2015.10.011. SILVA M W B and KRETLY L C. An efficient method based on equivalent-circuit modeling for analysis of Frequency Selective Surfaces[C]. Proceedings of the Microwave & Optoelectronics Conference, Rio de Janeiro, Brazil, 2013: 1–4. doi: 10.1109/IMOC.2013.6646473. 王秀芝, 高勁松, 徐念喜. 利用等效電路模型快速分析加載集總元件的微型化頻率選擇表面 [J]. 物理學(xué)報, 2013, 62(20): 1–5. DOI: 10.7498/aps.62.207301.WANG Xiuzhi, GAO Jinsong, and XU Nianxi. Quick analysis of miniaturized-element frequency selective surface that loaded with lumped elements by using an equivalent circuit model[J]. Acta Physica Sinica, 2013, 62(20): 1–5. DOI: 10.7498/aps.62.207301. HAN Ye, CHE Wenquan, CHRISTOPOULOS C, et al.. A fast and efficient design method for circuit analog absorbers consisting of resistive square-loop arrays [J]. IEEE Transactions on Electromagnetic Compatibility, 2016, 58(3): 747–757. DOI: 10.1109/TEMC.2016.2524553. SHANG Yuping, SHEN Zhongxiang, and XIAO Shaoqiu. On the design of single-Layer circuit analog absorber using double-square-loop array [J]. IEEE Transactions on Antennas & Propagation, 2013, 61(12): 6022–6029. DOI10.1109/Tap.2013.2280836. YANG Juan and SHEN Zhongxiang. A thin and broadband absorber using double-square loops [J]. IEEE Antennas & Wireless Propagation Letters, 2007, 6: 388–391. DOI: 10.1109/LAWP.2007.903496. LUO X F, TEO P T, QING A, et al.. Design of double‐square‐loop frequency‐selective surfaces using differential evolution strategy coupled with equivalent‐circuit model [J]. Microwave & Optical Technology Letters, 2005, 44(2): 159–162. DOI: 10.1002/mop.20575. SUDHENDRA C, RAMKUMAR M A, and RAO K A R K. Design, analysis, and implementation of spacecloth based on hexagonal resistor grid network of planar resistors [J]. IEEE Microwave & Wireless Components Letters, 2017, 27(11): 986–988. DOI: 10.1109/LMWC.2017.2750066. 白正元, 姜雄偉, 張龍. 超薄電磁屏蔽光窗超材料吸波器 [J]. 光學(xué)學(xué)報, 2017, 37(8): 244–252. DOI: 10.3788/AOS201737.0816003.BAI Zhengyuan, JIANG Xiongwei and ZHANG Long. Ultra-thin metamaterial absorber for electromagnetic window shielding[J]. Acta Optica Sinica, 2017.37(8): 244–252. DOI: 10.3788/AOS201737.0816003. -