混合噪聲下基于Viterbi同步壓縮S變換的FM信號(hào)分析
doi: 10.11999/JEIT171091
-
1.
西安電子科技大學(xué)電子工程學(xué)院 ??西安 ??710071
-
2.
南京大學(xué)計(jì)算機(jī)科學(xué)與技術(shù)系 ??南京 ??211102
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(61701374),陜西省自然科學(xué)基金(JB160210),中央高?;究蒲袠I(yè)務(wù)費(fèi)專(zhuān)項(xiàng)資金,西安電子科技大學(xué)研究生創(chuàng)新基金
Analysis of FM Signals Based on Viterbi Synchrosqueezing S-transform in Mixture Noise
-
1.
School of Electronic Engineering, Xidian University, Xi’an 710071, China
-
2.
Department of Computer Science, Nanjing University, Nanjing 211102, China
Funds: The National Natural Science Foundation of China(61701374), The Natural Science Foundation of Shannxi Province(JB160210), The Fundamental Research Foundation of the Central Universities, The Innovation Foundation of Xidian University
-
摘要: 該文針對(duì)同步壓縮S變換(SSST)在混合噪聲下的失真問(wèn)題,提出一種新型穩(wěn)健性廣義同步壓縮S變換(GSST)。該方法首先改進(jìn)Viterbi算法以提高S變換在混合噪聲下的時(shí)頻分析性能,在獲取調(diào)頻(FM)信號(hào)的相位軌跡信息后,利用同步壓縮技術(shù)提高時(shí)頻聚集性。仿真實(shí)驗(yàn)表明,在α-高斯混合噪聲環(huán)境下,該方法能夠在低信噪比下精確獲取FM信號(hào)的時(shí)頻信息,有效改善了傳統(tǒng)同步壓縮算法的穩(wěn)健性和適用性。
-
關(guān)鍵詞:
- Viterbi算法 /
- 同步壓縮變換 /
- α-高斯混合噪聲 /
- 變趨勢(shì)窗S變換
Abstract: A new robust Generalized Synchrosqueezing S-Transform(GSST) is proposed to solve the distortion problem of SynchroSqueezing S-Transform(SSST) in mixture noise. Firstly, the method improves the Viterbi algorithm for improving the Time-Frequency(TF) analysis performance of S-transform in alpha-gaussian mixture noise. After acquiring the phase locus information of the FM signal, the synchrosqueezing is used to improve the time-frequency aggregation. The simulation results show that the proposed method can accurately obtain the time-frequency information of FM signal under the background of Alpha-Gaussian mixture noise in low SNR, and has a better robustness and applicability than the SST. -
DAUBECHIES I, LU Jianfeng, and WU H T. Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool[J]. Applied and Computational Harmonic Analysis, 2011, 30(2): 243–261 doi: 10.1016/j.acha.2010.08.002 BRAJOVIC M, POPOVIC-BUGARIN V, DJUROVIC I, et al. Post-processing of time-frequency representations in instantaneous frequency estimation based on ant colony optimization[J]. Signal Processing, 2017, 138: 195–210 doi: 10.1016/j.sigpro.2017.03.022 OBERLIN T, MEIGNEN S, and PERRIER V. Second-order synchrosqueezing transform or invertible reassignment? towards ideal time-frequency representations[J]. IEEE Transactions on Signal Processing, 2015, 63(5): 1335–1344 doi: 10.1109/TSP.2015.2391077 PHAM D and MEIGNEN S. High-order synchrosqueezing transform for multicomponent signals analysis - with an application to gravitational-wave signal[J]. IEEE Transactions on Signal Processing, 2017, 65(12): 3168–3178 doi: 10.1109/TSP.2017.2686355 AUGER F, FLANDRIN P, LIN Yuting, et al. Time-frequency reassignment and synchrosqueezing: An overview[J]. IEEE Signal Processing Magazine, 2013, 30(6): 32–41 doi: 10.1109/MSP.2013.2265316 STOCKWELL R, MANSINHA L, and LOWE R. Localization of the complex spectrum: The S transform[J]. IEEE Transactions on Signal Processing, 1996, 44(4): 998–1001 doi: 10.1109/78.492555 朱明哲, 姬紅兵, 林琳, 等. 基于方向性S變換的多分量FM信號(hào)瞬時(shí)頻率估計(jì)[J]. 系統(tǒng)工程與電子技術(shù), 2013, 35(1): 29–33 doi: 10.3969/j.issn.1001-506X.2013.01.05ZHU Mingzhe, JI Hongbing, LIN Lin, et al. Instantaneous frequency estimation of multicomponent FM signals based on directional S transform[J]. Systems Engineering and Electronics, 2013, 35(1): 29–33 doi: 10.3969/j.issn.1001-506X.2013.01.05 BOASHASH B. Estimating and interpreting the instantaneous frequency of a signal[J]. Proceedings of the IEEE, 1992, 80(4): 520–538 doi: 10.1109/5.135376 BARKAT B and BOASHASH B. Instantaneous frequency estimation of polynomial FM signals using the peak of the PWVD: Statistical performance in the presence of additive gaussian noise[J]. IEEE Transactions on Signal Processing, 1999, 47(9): 2480–2490 doi: 10.1109/78.782191 DJUROVIC I and STANKOVIC L. An algorithm for the Wigner distribution based instantaneous frequency estimation in a high noise environment[J]. Signal Processing, 2004, 84(3): 631–643 doi: 10.1016/j.sigpro.2003.12.006 STANKOVIC L, DJUROVIC I, OHSUMI A, et al. Instantaneous frequency estimation by using Wigner distribution and Viterbi algorithm[C]. IEEE International Conference on, Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP’03). Hong Kong, China, 2003, 6: VI-121-4. doi: 10.1109/ICASSP.2003.1201633. LI Po, WANG Dechun, and WANG Lu. Separation of micro-Doppler signals based on time frequency filter and Viterbi algorithm[J]. Signal Image&Video Process, 2013, 7(3): 593–605 doi: 10.1007/s11760-011-0263-3 LI Po and ZHANG Qinghai. An improved Viterbi algorithm for IF extraction of multicomponent signals[J]. Signal Image&Video Process, 2017(7): 1–9 doi: 10.1007/s11760-017-1143-2 金艷, 武艷鳳, 姬紅兵. 基于a穩(wěn)定分布噪聲稀疏性及最優(yōu)匹配的跳頻信號(hào)參數(shù)估計(jì)[J]. 電子與信息學(xué)報(bào), 2017, 39(10): 2413–2420 doi: 10.11999/JEIT161397JIN Yan, WU Yanfeng, and JI Hongbing. Parameter estimation of FH Signals based on a stable noise sparsity and optimal match[J]. Journal of Electronics&Information Technology, 2017, 39(10): 2413–2420 doi: 10.11999/JEIT161397 李兵兵, 馬洪帥, 劉明騫. Alpha穩(wěn)定分布噪聲下時(shí)頻重疊信號(hào)的載波頻率估計(jì)方法[J]. 電子與信息學(xué)報(bào), 2014, 36(4): 868–874 doi: 10.3724/SP.J.1146.2013.00827LI Bingbing, MA Hongshuai, and LIU Mingqian. Carrier frequency estimation method of time-frequency overlapped signals with alpha-stable noise[J]. Journal of Electronics&Information Technology, 2014, 36(4): 868–874 doi: 10.3724/SP.J.1146.2013.00827 金艷, 高舵, 姬紅兵. 復(fù)雜噪聲下基于同步壓縮Chirplet變換的LFM信號(hào)參數(shù)估計(jì)[J]. 電子與信息學(xué)報(bào), 2017, 39(8): 1906–1912 doi: 10.11999/JEIT161222JIN Yan, GAO Duo, and JI Hongbing. Parameter estimation of LFM signals based on synchrosqueezing Chirplet transform in complicated noise[J]. Journal of Electronics&Information Technology, 2017, 39(8): 1906–1912 doi: 10.11999/JEIT161222 HUANG Zhonglai, ZHANG Jianzhong, ZHAO Tiehu, et al. Synchrosqueezing S-transform and its application in seismic spectral decomposition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(2): 817–825 doi: 10.1109/TGRS.2015.2466660 -