多徑條件下米波頻分MIMO雷達(dá)波束性能及優(yōu)化方法
doi: 10.11999/JEIT171030
-
空軍預(yù)警學(xué)院 ??武漢 ??430019
基金項目: 國家自然科學(xué)基金(61179015)
Beam Performance and Optimization Method for Meter-wave Frequency Diverse MIMO Radar in Multipath Scenario
-
Air Force Early Warning Academy, Wuhan 430019, China
Funds: The National Natural Science Foundation of China (61179015)
-
摘要: 針對傳統(tǒng)米波雷達(dá)低仰角下波瓣分裂和盲區(qū)問題,該文提出一種頻率分集子孔徑MIMO雷達(dá),構(gòu)建了該體制下多徑特性定量分析的理論框架,推導(dǎo)了鏡面反射和擾動多徑模型及其聯(lián)合發(fā)射-接收方向圖增益閉合表達(dá)式;提出了多徑抑制區(qū)概念及其邊界條件,定義了描述低空波束覆蓋性能的低可觀測率定量評價指標(biāo);根據(jù)邊界條件的解集優(yōu)化了波束覆蓋性能。理論分析和仿真結(jié)果表明由于充分利用了頻率分集產(chǎn)生的距離依賴波束,該體制雷達(dá)相對傳統(tǒng)MIMO相控陣?yán)走_(dá)具有更優(yōu)的低空波束覆蓋性能,減小了米波雷達(dá)波瓣分裂和探測盲區(qū)。
-
關(guān)鍵詞:
- 頻率分集MIMO雷達(dá) /
- 距離依賴波束 /
- 多徑特性 /
- 低空波束性能
Abstract: Traditional meter-wave radar usually suffers from the problem of Beam Split (BS) and Radar Blind Area (RBA) in the situation of low-grazing angle. To alleviate this difficulty, a Frequency Diverse Subaperturing Multiple-Input Multiple-Output (FDS-MIMO) radar is proposed and a theoretical framework for the analytical investigation of multipath characteristics is presented. The specular and perturbational multipath model is built, along with closed-form expression of the joint transmit-receive beampattern gain. Moreover, a notional concept of Multipath Mitigation Area (MMA) is defined together with the corresponding boundary conditions, and the Low Observability Rate (LOR) is defined as a performance benchmarkan to evaluate the FDS-MIMO radar beam overage capability. Next, the FDS-MIMO radar low-altitude beam coverage performance is optimized according to the soutions of the boundary conditions. Both theoretical analysis and numerical results demonstrate the advantages of FDS-MIMO radar over the conventional phased-MIMO radar in terms of low altitude beam coverage performance, and the BS and RBA of meter-wave radar is decreased by ultilizing the range-dependent beampattern. -
表 1 低可觀測時間(s)
飛行路徑 1 2 3 4 MIMO相控陣體制 34.15 34.15 22.39 18.87 MIMO頻率分集體制(優(yōu)化 $\Delta f$) 8.70 0 0.75 1.00 下載: 導(dǎo)出CSV
表 2 擾動散射系數(shù)分布
編號 A B C D E 幅度 1 (0.9, 10) (0.7, 1) (0.6, 1) (0.4, 1) 相位 $(^\circ )$ –180 (–190, –170) (–200, –160) (–200, –150) (–220, –140) 下載: 導(dǎo)出CSV
-
WHITE W D. Low-angle radar tracking in the presence of multipath[J]. IEEE Transaction on Aerospace and Electronic Systems, 1974, 10(6): 835–852. DOI: 10.1109/TAES.1974.307892. SHERMAN S M. Complex indicated angles applied to unresolved radar targets and multipath[J]. IEEE Transaction on Aerospace and Electronic Systems, 1971, 7(1): 160–170. DOI: 10.1109/TAES.1971.310264. SCHMIDT R O. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 24(3): 276–280. DOI: 10.1109/TAP.1986.1143830. GAO F and GERAHMAN A B. A generalized ESPRIT approach to direction of arrival estimation[J]. IEEE Signal Processing Letters, 2005, 12(3): 254–257. DOI: 10.1109/LSP.2004.842276. STOICA P, OTTERATEN B, VIBERG M, et al. Maximum likelihood array processing for stochastic coherent sources[J]. IEEE Transactions on Signal Processing, 1996, 44(1): 96–105. DOI: 10.1109/78.482015. 王文欽, 邵懷宗, 陳慧. 頻控陣?yán)走_(dá): 概念、原理與應(yīng)用[J]. 電子與信息學(xué)報, 2016, 38(4): 1000–1011. DOI: 10.11999/JEIT151235.WANG Wenqing, SHAO Huaizong, and CHEN Hui. Frequency diverse array radar: Concept, principle and application[J]. Journal of Electronics & Information Technology, 2016, 38(4):1000–1011. DOI: 10.11999/JEIT151235. 高寬棟. 頻控陣?yán)走_(dá)陣列優(yōu)化設(shè)計及其目標(biāo)參數(shù)估計方法研究[D]. [博士論文], 電子科技大學(xué), 2016.GAO Kuandong. Research of optimal array design and parameter estimation on frequency diverse array radar[D]. [Ph.D. dissertation], University of Electronic Science and Technology, 2016. YAO Amin, WU Wen, FANG Dagang, et al. Frequency diverse array antenna using time-modulated optimized frequency offset to obtain time-invariant spatial fine focusing beampattern[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(10):4434–4446. DOI: 10.1109/TAP.2016.2594075. FAROOQ J, TEMPLE M, and SAVILLE M. Exploiting frequency diverse array processing to improve SAR image resolution[C]. Proceedings of the IEEE Radar Conference, Rome, Italy, 2008: 1–5. doi: 10.1109/RADAR.2008.4721083. LI Xingxing, WANG Dangwei, and MA Xiaoyan. Three-dimensional target localization and Cramér-Rao bound for two-dimensional OFDM-MIMO radar[J]. International. Journal of Antennas and Propagation, 2017(1): 1–14. DOI: 10.1155/2017/4171452. XU Jingwei, LIAO Guisheng, ZHU Shengqi, et al. Joint range and angle estimation using MIMO radar with frequency diverse array[J]. IEEE Transactions on Signal Processing, 2015, 63(13): 3396–3410. DOI: 10.1109/TSP.2015.2422680. XU Jingwei, LIAO Guisheng, ZHU Shengqi, et al. Deceptive jamming suppression with frequency diverse MIMO radar[J]. Signal Processing, 2015, 113: 9–17. DOI: 10.1016/j.sigpro.2015.01.014. CAGRI C and SIMSEK D. Multipath characteristics of frequency diverse arrays over a ground plane[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(7): 3567–3574. DOI: 10.1109/TAP.2014.2316292. 鄭軼松, 陳伯孝. 米波雷達(dá)低仰角目標(biāo)多徑模型及其反演方法研究[J]. 電子與信息學(xué)報,2016, 38(6): 1468–1474. DOI: 10.11999/JEIT151013.ZHENG Yisong and CHEN Baixiao. Multipath model and inversion method for low-angle target in very high frequency radar[J]. Journal of Electronics & Information Technology, 2016, 38(6): 1468–1474. DOI: 10.11999/JEIT151013. 劉源, 王洪先, 糾博, 等. 米波MIMO雷達(dá)低空目標(biāo)波達(dá)方向估計新方法[J]. 電子與信息學(xué)報,2016, 38(3): 622–628. DOI: 10.11999/JEIT150555.LIU Yuan, WANG Hongxian, JIU Bo, et al. A new method for DOA estimation for VHF MIMO radar low-angle tracking environment[J]. Journal of Electronics & Information Technology, 2016, 38(3):622–628. DOI: 10.11999/JEIT150555. HASSANIEN A and VOROBYOV S A. Phased-MIMO radar: A tradeoff between phased-array and MIMO radars[J]. IEEE Transaction on Signal Processing, 2010, 58(6): 3137–3151. DOI: 10.1109/TSP.2010.2043976. CHEN Baixiao, ZHAO Guanghui, and ZHANG Shouhong. Altitude measurement based on beam split and frequency diversity in VHF radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(1): 3–13. DOI: 10.1109/TAES.2010.5417144. -