基于預(yù)測(cè)方法的無(wú)線體域網(wǎng)跨層優(yōu)化研究
doi: 10.11999/JEIT171007
基金項(xiàng)目:
中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金資助(30918011329)
Cross-layer Optimization for Wireless Body Area Networks Based on Prediction Method
Funds:
The Fundamental Research Funds for the Central Universities(30918011329)
-
摘要: 為改善無(wú)線體域網(wǎng)的能效和傳輸可靠性,該文針對(duì)其具有資源有限、信道質(zhì)量波動(dòng)頻繁、所傳輸數(shù)據(jù)有異構(gòu)性等特點(diǎn),提出一種基于鏈路質(zhì)量預(yù)測(cè)的跨層優(yōu)化方案。通過對(duì)物理層、網(wǎng)絡(luò)層和MAC層的松散耦合,自適應(yīng)地選擇傳感器節(jié)點(diǎn)的傳輸功率,并且建立高效節(jié)能的端到端路由。仿真結(jié)果顯示,該方案相對(duì)于已有的單層協(xié)議,整體提高了體域網(wǎng)的能量效率和傳輸可靠性。
-
關(guān)鍵詞:
- 無(wú)線體域網(wǎng) /
- 功率控制 /
- 路由選擇 /
- 動(dòng)態(tài)鏈路
Abstract: In order to improve the energy efficiency and reliability of Wireless Body Area Networks (WBANs), this paper takes full consideration of characteristics of WBANs, such as limited resources, frequent channel quality fluctuations, heterogeneous data traffic, and proposes a Cross-Layer Optimization scheme based on link quality prediction (CLO algorithm). Through the loose coupling of physical layer, network layer and MAC layer, the transmission power of every sensor node is adaptively chosen, and the energy-efficient end-to-end routing is established. Simulation results show that the proposed scheme can improve the energy efficiency and transmission reliability of WBANs as compared with the existing single layer protocols.-
Key words:
- Wireless Body Area Networks (WBANs) /
- Power control /
- Routing /
- Dynamic link
-
HAMIDA E B, D'ERRICO R, and DENIS B. Topology dynamics and network architecture performance in wireless body sensor networks[C]. IFIP International Conference on New Technologies, Mobility and Security, Paris, France, 2011: 1-6. ERIK A, PEIO L, LEYRE A, et al. Design and performance analysis of wireless body area networks in complex indoor e-Health hospital environments for patient remote monitoring[J]. International Journal of Distributed Sensor Networks, 2016, 12(9): 1-25. doi: 10.1177/1550147716668063. 蘇丹, 李章勇, 章敬雪, 等. 基于轉(zhuǎn)發(fā)節(jié)點(diǎn)的無(wú)線體域網(wǎng)動(dòng)態(tài)信道研究[J]. 重慶郵電大學(xué)學(xué)報(bào)(自然科學(xué)版), 2015, 27(2): 235-240. doi: 10.3979/j.issn.1673-825X.2015.02.017. SU Dan, LI Zhangyong, ZHANG Jingxue, et al. Dynamic body communication channels base-relay nodes for wireless body area networks[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2015, 27(2): 235-240. doi: 10.3979/j.issn.1673-825X.2015.02. 017. HAMIDA E B, ALAM M M, MAMAN M, et al. Short-term link quality estimation for opportunistic and mobility aware routing in wearable body sensors networks[C]. International Conference on Wireless and Mobile Computing, Networking and Communications, Larnaca, Cyprus, 2014: 519-526. CHEN Yunxia, ZHAO Qing, VIKRAM K, et al. Transmission scheduling for optimizing sensor network lifetime: A stochastic shortest path approach[J]. IEEE Transactions on Signal Processing, 2007, 55(5): 2294-2309. doi: 10.1109/TSP. 2007.893213. LIANG Xiaohui, LI Xu, SHEN Qinghua, et al. Exploiting prediction to enable secure and reliable routing in wireless body area networks[C]. IEEE International Conference on Computer Communications, Orlando, USA, 2012: 388-396. ELHADJ H B, ELIAS J, CHAARI L, et al. A priority based cross layer routing protocol for healthcare applications[J]. Ad Hoc Networks, 2016, 42: 1-18. HENNA S, SAJEEL M, BASHIR F, et al. A fair contention access scheme for low-priority traffic in wireless body area networks[J]. Sensors, 2017, 17(9): 1-21. doi: 10.3390/ s17091931. QUWAIDER M, MUHAMMAD A, CHOI J, et al. Posture- predictive power control in body sensor networks using linear-quadratic Gaussian control[C]. International Conference on Networks and Communications, Chennai, India, 2009: 52-59. FERNANDES D, FERREIRA A G, ABRISHAMBAF R, et al. A low traffic overhead transmission power control for wireless body area networks[J]. IEEE Sensors Journal, 2018, 18(3): 1301-1313. doi: 10.1109/JSEN.2017.2778802. 鄧志宏, 老松楊, 白亮. 基于預(yù)測(cè)誤差修正的時(shí)序鏈路預(yù)測(cè)方法[J]. 電子與信息學(xué)報(bào), 2014, 36(2): 325-331. doi: 10.3724/ SP.J.1146.2013.00657. DENG Zhihong, LAO Songyang, and BAI Liang. A temporal link prediction method based on link prediction error correction[J]. Journal of Electronics Information Technology, 2014, 36(2): 325-331. doi: 10.3724/SP.J.1146. 2013.00657. ARFI A B, KARKVANDI H R, PECHT E, et al. Lifetime- improved collection tree protocol for wireless sensor networks [C]. IEEE Annual Information Technology, Electronics and Mobile Communication Conference, Vancouver, Canada, 2016: 1-6. EFFATPARVAR M, DEHGHAN M, and RAHMANI A M. A comprehensive survey of energy-aware routing protocols in wireless body area sensor networks[J]. Journal of Medical Systems, 2016, 40(9): 1-27. doi: 10.1007/s10916-016-0556-8. ANISI M H, ABDUL-SALAAM G, IDRIS M Y I, et al. Energy harvesting and battery power based routing in wireless sensor networks[J]. Wireless Networks, 2017, 23(1): 249-266. doi: 10.1007/s11276-015-1150-6. 盧先領(lǐng), 彭能明, 徐保國(guó). 無(wú)線體域網(wǎng)中能量高效且可靠的自適應(yīng)路由協(xié)議[J]. 電子與信息學(xué)報(bào), 2013, 35(6): 1520-1524. doi: 10.3724/SP.J.1146.2012.01367. LU Xianling, PENG Nengming, and XU Baoguo. Energy efficient and reliable adaptive routing protocol in WBANs[J]. Journal of Electronics Information Technology, 2013, 35(6): 1520-1524. doi: 10.3724/SP.J.1146.2012.01367. DONG Jie, GE Yu, and SMITH D B. Two-Hop relay-assisted cooperative communication in wireless body area networks: An empirical study[J]. ACM Transactions on Sensor Networks, 2016, 12(4): 1-13. doi: 10.1145/2979679. MOOSAVI H and BUI F M. Optimal relay selection and power control with quality-of-service provisioning in wireless body area networks[J]. IEEE Transactions on Wireless Communications, 2016, 15(8): 5497-5510. doi: 10.1109/TWC. 2016.2560820. AOYAGI T, TAKADA J, TAKIZAWA K, et al. Channel model for wearable and implantable WBANs[S]. IEEE 802. 15-08-0416-04-0006, 2008. XIAO Shuo, DHAMDHERE A, SIVARAMAN V, et al. Transmission power control in body area sensor networks for healthcare monitoring[J]. IEEE Journal on Selected Areas in Communications, 2009, 27(1): 37-48. doi: 10.1109/JSAC. 2009.090105. Texas Instruments. CC2420 2.4 GHz IEEE 802.15.4/ ZigBee- ready RF Transceiver[OL]. http://www.ti.com/lit/ds/ symlink/cc2420.pdf, 2014. -
計(jì)量
- 文章訪問數(shù): 1366
- HTML全文瀏覽量: 159
- PDF下載量: 78
- 被引次數(shù): 0