一種(41, 21, 9)平方剩余碼的快速代數(shù)譯碼算法
doi: 10.11999/JEIT170983
-
福建師范大學(xué)福建省光電傳感應(yīng)用工程技術(shù)研究中心 ??福州 ??350007
A Fast Algebraic Decoding of the (41, 21, 9) Quadratic Residue Code
-
Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, Fujian Normal University, Fuzhou 350007, China
-
摘要: 為了降低譯碼時(shí)的計(jì)算復(fù)雜度以及減少譯碼時(shí)間,該文通過對牛頓恒等式進(jìn)行推導(dǎo)得到了(41, 21, 9) QR碼不需要計(jì)算未知校驗(yàn)子就可求得錯(cuò)誤位置多項(xiàng)式系數(shù)的代數(shù)譯碼算法,同時(shí)也針對改善部分客觀地給出了計(jì)算復(fù)雜度的理論分析。此外,為了進(jìn)一步降低譯碼時(shí)間,提出判定接收碼字中出現(xiàn)不同錯(cuò)誤個(gè)數(shù)的更簡化的判斷條件。仿真結(jié)果表明該文提出算法在不降低Lin算法所達(dá)到的譯碼性能的前提下,降低了譯碼時(shí)間。
-
關(guān)鍵詞:
- 平方剩余碼 /
- 代數(shù)譯碼 /
- 牛頓恒等式 /
- 未知校驗(yàn)子 /
- 錯(cuò)誤位置多項(xiàng)式
Abstract: In order to reduce the computational complexity of computing unknown syndromes for the coefficients of the error-locator polynomial and reduce the decoding time when one is decoding, this paper proposed an algebraic decoding algorithm of (41, 21, 9) QR code without calculating the unknown syndromes by solving the Newtonian identity. Simultaneously, an objective theoretical analysis of the computational complexity is given for the part of improvement. Besides, this paper also puts forward the simplifying conditions to determine the number of errors in the received word, which in order to further reducing the decoding time. Simulation results show that the proposed algorithm reduces the decoding time with maintaining the same decoding performance of Lin’s algorithm. -
表 1 兩種譯碼算法計(jì)算L4(z)復(fù)雜度的比較
算法 乘法 加法 Lin算法 361 128 本文算法 294 101 降低百分比(%) 18.56 21.09 下載: 導(dǎo)出CSV
表 2 兩種譯碼算法平均譯碼時(shí)間(μs)
錯(cuò)誤個(gè)數(shù) 錯(cuò)誤模式總數(shù) Lin算法 本文算法 1 41 24.20 3.94 2 820 142.62 52.79 3 10660 275.60 231.73 4 101270 562.01 477.78 下載: 導(dǎo)出CSV
-
PRANGR E. Cyclic error-correcting codes in two symbols, AFCRC-TN-57-103[R]. Cambridge, MA: AirForce Cambridge Research Center, 1957. LEE Chongdao, CHANG Yaotsu, and CHANG Hohsuan. Unusual general error locator polynomial for the (23, 12, 7) golay code[J]. IEEE Communications Letters, 2010, 14(4): 339–341. DOI: 10.1109/LCOMM.2010.04.091969. REED I S, TRUONG T K, CHEN Xuemin, et al. The algebraic decoding of the (41, 21, 9) quadratic residue code[J]. IEEE Transactions on Information Theory, 1992, 38(3): 974–986. DOI: 10.1109/18.135639. CHEN Xuemin, REED I S, HELLESETH T, et al. Use of gr?bner bases to decode binary cyclic codes up to the true minimum distance[J]. IEEE Transactions on Communication, 1994, 40(5): 1654–1661. DOI: 10.1109/18.333885. CHIEN R. Cyclic decoding procedure for Bose-Chaudhuri-Hocquenghem codes[J]. IEEE Transactions on Information Theory, 1964, 10(4): 357–363. DOI: 10.1109/TIT.1964.1053699. CHEN Yanhaw, HUANG Chingfu, and CHANG J. Decoding of binary quadratic residue codes with hash table[J]. IET Communications, 2016, 10(1): 122–130. DOI: 10.1049/iet-com.2015.0546. LIN Tsungching, LEE Chongdao, CHEN Yanhaw, et al. Algebraic decoding of cyclic codes without error-locator polynomials[J]. IEEE Transactions on Communications, 2016, 64(7): 2719–2731. DOI: 10.1109/TCOMM.2016.2569078. ZHANG Pengwei, LI Yong, CHANG Hsinchiu, et al. Fast decoding of the (47, 24, 11) quadratic residue code without determining the unknown syndromes[J]. IEEE Communications Letters, 2015, 19(8): 1279–1282. DOI: 10.1109/LCOMM.2015.2440263. 陳高明, 黎勇, 董燦, 等. 一種(71, 36, 11)QR碼的快速代數(shù)譯碼算法[J]. 重慶郵電大學(xué)學(xué)報(bào)(自然科學(xué)版), 2015, 27(6): 781–785. DOI: 10.3979 /j.issn.1673-825X.2015.06.013.CHEN Gaoming, LI Yong, DONG Can, et al. A fast algebraic decoding algorithm of the (71, 36, 11) quadratic residue code[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2015, 27(6): 781–785. DOI: 10.3979/j.issn. 1673-825X. 2015.06.013. LIN Tsungching, CHANG Hsinchiu, LI Yong, et al. Algebraic decoding of the (71, 36, 11) quadratic residue code[J]. IET Communications, 2016, 10(6): 734–738. DOI: 10.1049/iet-com.2015.0159. HUANG Chingfu and CHEN Yanhaw. Efficient software method for decoding of the (71, 36, 11) quadratic residue code[C]. Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP), Adelaide, Australia, 2015: 45–48. LIN Tsungching, TRUONG T K, LEE Hungpeng, et al. Algebraic decoding of the (41, 21, 9) quadratic residue code[J]. Information Sciences, 2009, 179(19): 3451–3459. DOI: 10.1016/j.ins.2009.06.002. FENG G and TZENG K. A new procedure for decoding cyclic and BCH codes up to actual minimum distance[J]. IEEE Transactions on Information Theory, 1994, 40(5): 1364–1374. DOI: 10.1109/18.333854. MACWILLIMS F J and SLOANE N J A. The Theory of Error Correcting Codes[M]. New York: North Holland, 1977: 244–245. WANG C C, TRUONG T K, SHAO H M, et al. VLSI architectures for computing multiplications and inverses in GF(2m)[J]. IEEE Transactions on Computers, 1985, C-34(8):709–717. DOI: 10.1109/TC.1985.1676616. -