多用戶大規(guī)模MIMO自適應安全傳輸策略
doi: 10.11999/JEIT170974
基金項目:
國家 863 計劃項目(2015AA01A708),國家自然科學基金(61471396, 61701538, 61601514, 61501516, 61521003)
Adaptive Secure Transmission Strategy for Multiuser Massive MIMO
Funds:
The National 863 Program of China (2015AA01A708), The National Natural Science Foundation of China (61471396, 61701538, 61601514, 61501516, 61521003)
-
摘要: 大規(guī)模MIMO系統(tǒng)采用空分多址可以提高系統(tǒng)吞吐量,同時利用多用戶下行信號的相互協(xié)作可以對竊聽者造成疊加干擾,帶來了天然的安全增益。但目前該系統(tǒng)的物理層安全研究仍采用傳統(tǒng)的人工噪聲方案,忽略了多用戶信號干擾帶來的安全增益,造成嚴重的功率浪費。針對這一問題,該文分析了多用戶信號干擾對系統(tǒng)可達平均安全速率和平均安全能效的影響,給出了系統(tǒng)的最佳接入用戶區(qū)間。研究發(fā)現(xiàn),在系統(tǒng)接入用戶數(shù)較少和用戶數(shù)較多時,系統(tǒng)安全能力較弱,針對此分別提出了N波束加擾和基于用戶位置的用戶調度的自適應安全傳輸策略。最后通過仿真驗證了理論推導和所提策略的有效性,利用該文所提策略,能夠保證系統(tǒng)天然安全能力不足時的安全通信。
-
關鍵詞:
- 大規(guī)模MIMO /
- 物理層安全 /
- 多用戶 /
- 自適應安全傳輸
Abstract: Massive MIMO system using Space Division Multiple Access (SDMA) can improve system throughput, and the use of multi-user downlink signal collaboration can cause superimposed interference to the eavesdropper, bringing a natural security gain. However, the physical layer security research of the system still adopts the traditional artificial noise scheme to improve the system security, ignoring the safety gain caused by the multi-user signal interference, resulting in serious power waste. In response to this problem, the impact of multi-user signal interference on the system achievable average security rate and average safety energy efficiency is analyzed in this paper, and the optimal interval of access users is given. The research shows that the system security capability is weak when the number of access users is small or large. Therefore, an adaptive secure transmission strategy to transmit N scrambling beams and user scheduling based on user location is proposed respectively. Finally, the effectiveness of the theoretical derivation and the proposed strategy is verified through the simulation. By using the proposed strategy, the secure communication can be guaranteed when the system,s natural security capability is insufficient.-
Key words:
- Massive MIMO /
- Physical layer security /
- Muti-users /
- Adaptive secure transmission
-
ZHU Jun, SCHOBER R, and BHARGAVA V K. Secure transmission in multicell massive MIMO systems[J]. IEEE Transactions on Wireless Communications, 2014, 13(9): 4766-4781. doi: 10.1109/TWC.2014.2337308. RUSEK F, PERSSON D, LAU B K, et al. Scaling up MIMO: Opportunities and challenges with very large arrays[J]. IEEE Signal Processing Magazine, 2013, 30(1): 40-60. doi: 10.1109/ MSP.2011.2178495. ZHU Jun, SCHOBER R, and BHARGAVA V K. Linear precoding of data and artificial noise in secure massive MIMO systems[J]. IEEE Transactions on Wireless Communications, 2016, 15(3): 2245-2261. doi: 10.1109/TWC.2015.2500578. ZHU Jun and WEI Xu. Securing massive MIMO via power scaling[J]. IEEE Communications Letters, 2016, 20(5): 1014-1017. doi: 10.1109/LCOMM.2016.2532328. ZHONG Zhihao, PENG Jianhua, HUANG Kaizhi, et al. Secrecy spectrum and secrecy energy efficiency in massive MIMO enabled hetnets[J]. KSII Transactions on Internet Information Systems, 2017, 11(2): 628-649. doi: 10.3837/tiis. 2017.02.002. KRIKIDIS I and OTTERSTEN B. Secrecy sum-rate for orthogonal random beamforming with opportunistic scheduling[J]. IEEE Signal Processing Letters, 2013, 20(2): 141-144. doi: 10.1109/LSP.2012.2234109. CHEN Xiaoming and ZHANG Yu. Mode selection in MU-MIMO downlink networks: A physical-layer security perspective[J]. IEEE Systems Journal, 2017, 11(2): 1128-1136. doi: 10.1109/JSYST.2015.2413843. DENG Yansha, WANG Lifeng, WONG K K, et al. Safeguarding massive MIMO aided hetnets using physical layer security[C]. Wireless Communications Signal Processing, Nanijing, China, 2015: 1-5. doi: 10.1109/WCSP. 2015.7341120. ZHAO Long, ZHENG Kan, LONG Hang, et al. Performance analysis for downlink massive MIMO system with ZF precoding[J]. Transactions on Emerging Telecommunications Technologies, 2014, 25(12): 1219-1230. doi: 10.1002/ett.2745. WANG Huiming, ZHENG Tongxing, YUAN Jinhong, et al. Physical layer security in heterogeneous cellular networks[J]. IEEE Transactions on Communications, 2016, 64(3): 1204-1219. doi: 10.1109/TCOMM.2016.2519402. OGGIER F and HASSIBI B. The secrecy capacity of the MIMO wiretap channel[J]. IEEE Transactions on Information Theory, 2011, 57(8): 4961-4972. doi: 10.1109/ TIT.2011.2158487. BJORNSON E, SANGUINETTI L, HOYDIS J, et al. Designing multi-user MIMO for energy efficiency: When is massive MIMO the answer?[C]. Wireless Communications and Networking Conference, Istanbul, Turkey, 2014: 242-247. doi: 10.1109/WCNC.2014.6951974. MARZETTA T L. Noncooperative cellular wireless with unlimited numbers of base station antennas[J]. IEEE Transactions on Wireless Communications, 2010, 9(11): 3590-3600. doi: 10.1109/TWC.2010.092810.091092. LIU Haijing, GAO Hui, YANG Shaoshi, et al. Low- complexity downlink user selection for massive MIMO systems[J]. IEEE Systems Journal, 2017, 11(2): 1072-1083. doi: 10.1109/JSYST.2015.2422475. HE Anqi, WANG Lifeng, ELKASHLAN M, et al. Spectrum and energy efficiency in massive MIMO enabled hetnets: A stochastic geometry approach[J]. IEEE Communications Letters, 2015, 19(12): 2294-2297. doi: 10.1109/LCOMM.2015. 2493060. -
計量
- 文章訪問數(shù): 1540
- HTML全文瀏覽量: 148
- PDF下載量: 138
- 被引次數(shù): 0