基于對比度增強(qiáng)與多尺度邊緣保持分解的紅外與可見光圖像融合
doi: 10.11999/JEIT170956
-
1.
(長春理工大學(xué)電子信息工程學(xué)院 長春 130022) ②(長春理工大學(xué)光電工程學(xué)院 長春 130022) ③(中國科學(xué)院光電研究院 北京 100094)
Infrared and Visible Image Fusion Based on Contrast Enhancement and Multi-scale Edge-preserving Decomposition
-
1.
(School of Electronics and Information Engineering, Changchun University of Science and Technology, Changchun 130022, China)
-
摘要: 在低照度環(huán)境下拍攝的可見光圖像可視性較差,若將其與紅外圖像直接融合會(huì)導(dǎo)致融合結(jié)果清晰度不理想。針對這一問題,該文提出一種基于對比度增強(qiáng)與多尺度邊緣保持分解的圖像融合方法。首先,在融合之前采用基于導(dǎo)向?yàn)V波的自適應(yīng)增強(qiáng)算法提高可見光圖像中暗區(qū)內(nèi)容的可視性。其次,通過一種尺度感知邊緣保持濾波器對輸入圖像進(jìn)行多尺度分解。再次,應(yīng)用頻率調(diào)諧濾波構(gòu)造顯著圖。最后,利用由導(dǎo)向?yàn)V波生成的權(quán)重圖重構(gòu)融合圖像。實(shí)驗(yàn)結(jié)果表明,所提方法不僅可以使細(xì)節(jié)信息更突出,而且還能夠有效地抑制偽影。
-
關(guān)鍵詞:
- 圖像融合 /
- 對比度增強(qiáng) /
- 多尺度邊緣保持分解 /
- 導(dǎo)向?yàn)V波器
Abstract: The visibility of the visible images is not good under the poor lighting condition. If the visible and infrared images are fused directly, the resolution of the fused images is not ideal. In order to solve this problem, a modified infrared and visible image fusion approach based on contrast enhancement and multi-scale edge-preserving is proposed. Firstly, an adaptive enhancement method based on the guided filter is adopted to enhance the visibility of dark region content in the visible image. Input images are then decomposed with a scale-aware edge-preserving filter. Subsequently, saliency maps of infrared and visible images are calculated on the basis of frequency-tuned filtering. Finally, the fused images are reconstructed with the weighting maps. Experiments show that the proposed scheme can not only make the detail information more prominent, but also suppress the artifacts effectively. -
AKERMAN A. Pyramidal techniques for multi-sensor fusion[J]. SPIE, 1992, 1828: 124-131. doi: 10.1117/12.131644. TOET A, VALETON J M, and VAN RUYEN L J. Merging thermal and visual images by a contrast pyramid[J]. Optical Engineering, 1989, 28(7): 789-792. doi: 10.1117/12.7977034. SHAO Zhenfeng, LIU Jun, and CHENG Qimin. Fusion of infrared and visible images based on focus measure operators in the curvelet domain[J]. Applied Optics, 2012, 51(12): 1910-1921. doi: 10.1364/AO.51.001910. LEWIS J J, OCALLAGHAN R J, NIKOLOV S G, et al. Pixel-and region-based image fusion with complex wavelets[J]. Information Fusion, 2007, 8(2): 119-130. doi: 10.1016/j.inffus. 2005.09.006. LI Shutao, KANG Xudong, and HU Jianwen. Image fusion with guided filtering[J]. IEEE Transactions on Image Processing, 2013, 22(7): 2864-2875. doi: 10.1109/TIP.2013. 2244222. ZHANG Qiong and MALDAGUE X. An adaptive fusion approach for infrared and visible images based on NSCT and compressed sensing[J]. Infrared Physics Technology, 2016, 74(1): 11-20. doi: 10.1016/j.infrared.2015.11.003. RIZZI A, GATTA C, and MARINI D. A new algorithm for unsupervised global and local color correction[J]. Pattern Recognition Letters, 2003, 24(11): 1663-1677. doi: 10.1016/ S0167-8655(02)00323-9. 溫海濱, 畢篤彥, 馬時(shí)平, 等. 消除階梯效應(yīng)與增強(qiáng)細(xì)節(jié)的變分Retinex紅外圖像增強(qiáng)算法[J]. 光學(xué)學(xué)報(bào), 2016, 36(9): 122-131. doi: 10.3788/aos201636.0911005. WEN Haibin, BI Duyan, MA Shiping, et al. Variational retinex algorithm for infrared image enhancement with staircase effect suppression and detail enhancement[J]. Acta Optica Sinica, 2016, 36(9): 122-131. doi: 10.3788/aos201636. 0911005. TAO Li, NGO Hau, ZHANG Ming, et al. A multisensory image fusion and enhancement system for assisting drivers in poor lighting conditions[C]. Proceedings of the 34th Applied Imagery and Pattern Recognition Workshop, Washington, 2005: 106-113. doi: 10.1109/AIPR.2005.9. LIU Zheng and LAGANIERE R. Context enhancement through infrared vision: A modified fusion scheme[J]. Signal Image and Video Processing, 2007, 1(4): 293-301. doi: 10.1007 /s11760-007-0025-4. 謝偉, 周玉欽, 游敏. 融合梯度信息的改進(jìn)引導(dǎo)濾波[J]. 中國圖象圖形學(xué)報(bào), 2016, 21(9): 1119-1126. doi: 10.11834/ jig.20160901. XIE Wei, ZHOU Yuqin, and YOU Min. Improved guided image filtering integrated with gradient information[J]. Journal of Image and Graphics, 2016, 21(9): 1119-1126. doi: 10.11834/jig.20160901. 蘇娟, 李冰, 王延釗. 結(jié)合PCNN分割和模糊集理論的紅外圖像增強(qiáng)[J]. 光學(xué)學(xué)報(bào), 2016, 36(9): 82-90. doi: 10.3788/ aos201636.0910001. SU Juan, LI Bing, and WANG Yanzhao. Infrared image enhancement based on PCNN segmentation and fuzzy set theory[J]. Acta Optica Sinica, 2016, 36(9): 82-90. doi: 10.3788 /aos201636.0910001. 劉峰, 沈同圣, 馬新星. 交叉雙邊濾波和視覺權(quán)重信息的圖像融合[J]. 儀器儀表學(xué)報(bào), 2017, 38(4): 1005-1013. doi: 10.3969/ j.issn.0254-3087.2017.04.027. LIU Feng, SHEN Tongsheng, MA Xinxing. Image fusion via cross bilateral filter and visual weight information[J]. Chinese Journal of Scientific Instrument, 2017, 38(4): 1005-1013. doi: 10.3969/j.issn.0254-3087.2017.04.027. ZHANG Qi, SHEN Xiaoyong, XU Li, et al. Rolling guidance filter[C]. Proceedings of the 13th European Conference on Computer Vision, Berlin Heidelberg, 2014: 815-830. doi: 10.1007/978-3-319-10578-9_53. ACHANTA R, HEMAMI S, ESTRADA F, et al. Frequency- tuned salient region detection[C]. Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009: 1597-1604. doi: 10.1109/ CVPR.2009.5206596. ZHAO Jufeng, FENG Huajun, XU Zhihai, et al. Detail enhanced multi-source fusion using visual weight map extraction based on multi scale edge preserving decomposition[J]. Optics Communications, 2013, 287(2): 45-52. doi: 10.1016/j.optcom.2012.08.070. 陳震, 楊小平, 張聰炫, 等. 基于補(bǔ)償機(jī)制的NSCT域紅外與可見光圖像融合[J]. 儀器儀表學(xué)報(bào), 2016, 37(4): 860-870. doi: 10.3969/j.issn.0254-3087.2016.04.019. CHEN Zhen, YANG Xiaoping, ZHANG Congxuan, et al. Infrared and visible image fusion based on the compensation mechanism in NSCT domain[J]. Chinese Journal of Scientific Instrument, 37(4): 860-870. doi: 10.3969/j.issn.0254-3087. 2016.04.019. LIU Yu, LIU Shupeng, and WANG Zengfu. A general framework for image fusion based on multi-scale transform and sparse representation[J]. Information Fusion, 2015, 24(7): 147-164. doi: 10.1016/j.inffus.2014.09.004. 孫彥景, 楊玉芬, 劉東林, 等. 基于內(nèi)在生成機(jī)制的多尺度結(jié)構(gòu)相似性圖像質(zhì)量評價(jià)[J]. 電子與信息學(xué)報(bào), 2016, 38(1): 127-134. doi: 10.11999/JEIT150616. SUN Yanjing, YANG Yufen, LIU Donglin, et al. Multiple- scale structural similarity image quality assessment based on internal generative mechanism[J]. Journal of Electronics Information Technology, 2016, 38(1): 127-134. doi: 10.11999 /JEIT150616. -
計(jì)量
- 文章訪問數(shù): 1708
- HTML全文瀏覽量: 268
- PDF下載量: 315
- 被引次數(shù): 0