海洋粗糙面全極化電磁散射特性研究
doi: 10.11999/JEIT170924
-
1.
(空軍工程大學防空反導學院 西安 710051) ②(空軍西安飛行學院 西安 710036)
基金項目:
國家自然科學基金(61372033)
Research on the Full Polarimetric Electromagnetic Scattering Characteristics of Ocean Rough Surface
-
1.
(Air Force Engineering University, Xi&rsquo
-
2.
(Air Force Xi&rsquo
Funds:
The National Natural Science Foundation of China (61372033)
-
摘要: 針對基于幾何光學-微擾法(GO-SPM)的傳統(tǒng)雙尺度模型對截斷波數(shù)敏感的問題,該文建立了一種基于幾何光學-小斜率近似(GO-SSA)的改進雙尺度模型。該模型將小尺度部分的微擾法替換為一階小斜率近似,并改進鏡向分量的幾何光學解。仿真表明該方法在獲取傳統(tǒng)雙尺度精度的同時,不需要考慮截斷波數(shù)的選取問題。針對Elfouhaily海浪譜模型的特點,簡化GO-SSA積分形式。最后采用GO-SSA對以Elfouhaily海浪譜建模的海表面的單雙站極化散射特性進行了仿真分析。發(fā)現(xiàn)雙站極化散射中,粗糙表面的斜率調制導致交叉極化出現(xiàn)了異于傳統(tǒng)模型的分布。同時在全空域的雙站極化散射仿真中,發(fā)現(xiàn)所有的極化方式在方位向內均存在極小值。該極小值的大小與環(huán)境參數(shù)密切相關,在環(huán)境參數(shù)反演方面具有應用潛力。Abstract: Considering the fact that the classical two scale model which is based on the Geometrical Optics-Small Perturbation Method (GO-SPM) is sensitive to the cut-off wave number, a two scale model derived from the Geometrical Optics-Small Slope Approximation (GO-SSA) is established. In this model, the SPM in the classical two scale model is replaced by the first order Small Slope Approximation (SSA1). At the same time, the solution of geometrical optics for specular contribution is modified. The simulations show that GO-SSA can get the same accuracy as GO-SPM while do not need to consider the choice of cut-off wave number. The integral equation of GO-SSA is simplified based on the characteristics of Elfouhaily wave spectrum. At last, the full polarimetric scattering characteristics of Elfouhaily ocean model in monostatic and bistatic cases are simulated and analyzed. It can be found that the results of cross polarization present an interesting distribution with variation of angles which is different from classical models. In the three-dimensional results of bistatic scattering, the scattered direction with minimum value always exists in every polarization form. The value of the scattering power in this direction has relationship with the parameters of the environment, which has a potential application to the parameter inversion.
-
Key words:
- Two scale /
- Small Slope Approximation (SSA) /
- Polarimetric scattering /
- Bistatic
-
ZHAO Xianbin, YAN Wei, WANG Yingqiang, et al. Simulation study on the design of key technical parameters in marine environment sounding with fully polarimetric synthetic aperture radar based on ocean surface scattering model[J]. Acta Physica Sinica, 2014, 63(21): 402-412. doi: 10.7498/aps.63.218401. 趙現(xiàn)斌, 嚴衛(wèi), 王迎強, 等. 基于海面散射模型的全極化合成孔徑雷達海洋環(huán)境探測關鍵技術參數(shù)設計仿真研究[J]. 物理學報, 2014, 63(21): 402-412. doi: 10.7498/aps.63.218401. AGHABABAEE H and SAHEBI M R. Incoherent target scattering decomposition of polarimetric SAR data based on vector model roll-invariant parameters[J]. IEEE Transactions on Geoscience Remote Sensing, 2016, 54(8): 4392-4401. doi: 10.1109/TGRS.2016.2540807. SABRY R. Terrain and surface modeling using polarimetric SAR data features[J]. IEEE Transactions on Geoscience Remote Sensing, 2016, 54(2): 1170-1184. doi: 10.1109/TGRS. 2015.2476352. HE L, PANCIERA R, TANASE M A, et al. Soil moisture retrieval in agricultural fields using adaptive model-based polarimetric decomposition of SAR data[J]. IEEE Transactions on Geoscience Remote Sensing, 2016, 54(8): 4445-4460. doi: 10.1109/TGRS.2016.2542214. MARINO A, DIERKING W, and WESCHE C. A depolarization ratio anomaly detector to identify icebergs in sea ice using dual-polarization SAR images[J]. IEEE Transactions on Geoscience Remote Sensing, 2016, 54(9): 5602-5615. doi: 10.1109/TGRS.2016.2569450. LIN R, YANG J, ZHENG G, et al. Significant wave height estimation using azimuth cutoff of C-band RADARSAT-2 single-polarization SAR images[J]. Acta Oceanologica Sinica, 2015, 34(12): 93-101. doi: 10.1007/s13131-015-0769-6. MAKHOUL E, LOPEZMC, and BROQUETAS A. Exploiting polarimetric TerraSAR-X data for sea clutter characterization[J]. IEEE Transactions on Geoscience Remote Sensing, 2015, 54(1): 358-372. doi: 10.1109/TGRS. 2015.2457242. LIAO T H, TSANG L, HUANG S, et al. Copolarized and cross-polarized backscattering from random rough soil surfaces from L-band to Ku-band using numerical solutions of Maxwells equations with near-field precondition[J]. IEEE Transactions on Geoscience Remote Sensing, 2016, 54(2): 651-662. doi: 10.1109/TGRS.2015.2451671. JIA C, GUO L, and YANG P. EM Scattering from a target above a 1-D randomly rough sea surface using GPU-based parallel FDTD[J]. IEEE Antennas Wireless Propagation Letters, 2015, 14: 217-220. doi: 10.1109/LAWP.2014. 2360415. REN Y, LIU Q H, and CHEN Y P. A hybrid FEM/MoM method for 3-D electromagnetic scattering in layered medium [J]. IEEE Transactions on Antennas Propagation, 2016, 64(8): 3487-3495. doi: 10.1109/TAP.2016.2575979. JOHNSON J T and OUELLETTE J D. Polarization features in bistatic scattering from rough surfaces[J]. IEEE Transactions on Geoscience Remote Sensing, 2014, 52(3): 1616-1626. doi: 10.1109/TGRS.2013.2252909. MARTINO G D, IODICE A, NATALE A, et al. Polarimetric two-scale two-component model for the retrieval of soil moisture under moderate vegetation via L-band SAR data[J]. IEEE Transactions on Geoscience Remote Sensing, 2016, 54(4): 2470-2491. doi: 10.1109/TGRS.2015. 2502425. ZHANG M, CHEN H, and YIN H C. Facet-based investigation on EM scattering from electrically large sea surface with two-scale profiles: theoretical model[J]. IEEE Transactions on Geoscience Remote Sensing, 2011, 49(6): 19671975. doi: 10.1109/TGRS.2013.2252909. ZHAO Y, ZHANG M, ZHAO Y W, et al. A bistatic SAR image intensity model for the composite ship-ocean scene[J]. IEEE Transactions on Geoscience Remote Sensing, 2015, 53(8): 4250-4258. doi: 10.1109/TGRS.2015.2393915. IODICE A, NATALE A, and RICCIO D. Retrieval of soil surface parameters via a polarimetric two-scale model[J]. IEEE Transactions on Geoscience Remote Sensing, 2011, 49(7): 2531-2547. doi: 10.1109/TGRS.2011.2106792. AWADA A, AVARI M Y, KHENCHAF A, et al. Bistatic scattering from an anisotropic sea surface: numerical comparison between the first-order SSA and the TSM models [J]. Waves in Random and Complex Media, 2006, 16(3): 383-394. doi: 10.1080/17455030600844089. SORIANO G and GUERIN C A. A cutoff invariant two-scale model in electromagnetic scattering from sea surfaces[J]. IEEE Transactions on Geoscience Remote Sensing Letters, 2008, 5(2): 199-203. doi: 10.1109/LGRS.2008.915746. CHEN K L, CHEN K S, LI Z L, et al. Extension and validation of an advanced integral equation model for bistatic scattering from rough surfaces[J]. Progress in Electromagnetics Research, 2015, 152: 59-76. doi: 10.2528/ PIER15011409. VORONOVICH A. Small-slope approximation for electromagnetic wave scattering at a rough interface of two dielectric half-spaces[J]. Waves in Random and Complex Media, 1994, 4(3): 337-367. doi: 10.1088/0959-7174/4/3/008. VORONOVICH A G. The effect of the modulation of Bragg scattering in small-slope approximation[J]. Waves in Random and Complex Media, 2002, 12(3): 341-349. doi: 10.1088/0959- 7174/12/3/306. LI J, ZHANG M, WEI P, et al. An improvement on SSA method for EM scattering from electrically large rough sea Surface[J]. IEEE Geoscience Remote Sensing Letters, 2016, 13(8): 1-5. doi: 10.1109/LGRS.2016.2574539. GUERIN C A and JOHNSON J T. A simplified formulation for rough surface cross-polarized backscattering under the second-order small-slope approximation[J]. IEEE Transactions on Geoscience Remote Sensing, 2015, 53(11): 6308-6314. doi: 10.1109/TGRS.2015.2440443. VORONOVICH A G and ZAVOROTNV V U. Full-polarization modeling of monostatic and bistatic radar scattering from a rough sea surface[J]. IEEE Transactions on Antennas Propagation, 2014, 62(3): 13621371. doi: 10.1109/TAP.2013.2295235. ELFOUHAILY T, GUIGNARD S, and THOMPSON D R. Formal tilt invariance of the local curvature approximation [J]. Waves in Random and Complex Media, 2003, 13(4): L7-L11. doi: 10.1088/0959-7174/13/4/101. ELFOUHAILY T M and JOHNSON J T. A new model for rough surface scattering[J]. IEEE Transactions on Geoscience Remote Sensing, 2007, 45(7): 2300-2308. doi: 10.1109/TGRS.2006.890419. WANG J and XU X. Doppler simulation and analysis for 2-D sea surfaces up to Ku-band[J]. IEEE Transactions on Geoscience Remote Sensing, 2015, 54(1): 466-478. doi: 10.1109/TGRS.2015.2459598. BOURLIER C, DECHAMPS N, and BERGINC G. Comparison of asymptotic backscattering models (SSA, WCA, and LCA) from one-dimensional Gaussian ocean-like surfaces[J]. IEEE Transactions on Antennas Propagation, 2005, 53(5): 1640-1652. doi: 10.1109/TAP. 2005.846800. MAJUREC N, JOHNSON J T, TANELLI S, et al. Comparison of model predictions with measurements of Ku- and Ka-band near-nadir normalized radar cross sections of the sea surface from the genesis and rapid intensification processes experiment[J]. IEEE Transactions on Geoscience Remote Sensing, 2014, 52(9): 5320-5332. doi: 10.1109/ TGRS.2013.2288105. ELFOUHAILY T, CHAPRON B, and KATSAROS K. A unified directional spectrum for long and short wind-driven waves[J]. Journal of Geophysical Research, 1997, 102(C7): 15781-15796. doi: 10.1029/97JC00467. VORONOVICH A G and ZAVOROTNV V U. Theoretical model for scattering of radar signals in Ku- and C- bands from a rough sea surface with breaking waves[J]. Waves in Random Media, 2001, 11(3): 247-269. doi: 10.1080/ 13616670109409784. -
計量
- 文章訪問數(shù): 1313
- HTML全文瀏覽量: 238
- PDF下載量: 177
- 被引次數(shù): 0