多層建筑室內(nèi)無線網(wǎng)絡的協(xié)作安全研究
doi: 10.11999/JEIT170874
基金項目:
國家自然科學基金(61379006, 61471396, 61601514, 61501516, 61521003)
Secrecy Performance Analysis of Cooperative Transmission for Multi-floor Building Indoor Wireless Networks
Funds:
The National Natural Science Foundation of China (61379006, 61471396, 61601514, 61501516, 61521003)
-
摘要: 多層建筑室內(nèi)無線網(wǎng)絡安全問題的特殊性,主要由其具有隨機性、動態(tài)性和復雜性的空間拓撲結(jié)構(gòu)所引起的。針對多層室內(nèi)無線網(wǎng)絡節(jié)點分布隨機、空間結(jié)構(gòu)復雜、損耗類型多樣等特點,該文結(jié)合物理層安全與隨機幾何理論,對多層室內(nèi)無線網(wǎng)絡中的多節(jié)點協(xié)作安全傳輸展開研究。首先,基于多層泊松點過程對K層室內(nèi)無線網(wǎng)絡進行建模;在此基礎上,將協(xié)作傳輸引入多層室內(nèi)無線網(wǎng)絡,并提出該網(wǎng)絡的安全概率分析框架;隨后,結(jié)合理論推導及仿真,分析了樓層總數(shù)、安全速率門限、用戶所處樓層和各層發(fā)射功率配置等因素對多層室內(nèi)無線網(wǎng)絡安全性能的影響。最后,通過仿真驗證了協(xié)作傳輸能夠有效提高室內(nèi)無線網(wǎng)絡的安全性能。
-
關(guān)鍵詞:
- 室內(nèi)無線網(wǎng)絡 /
- 物理層安全 /
- 協(xié)作傳輸 /
- 安全覆蓋概率
Abstract: The particularity of security threats for Multi-floor building Indoor Wireless Networks (MIWNs) is mainly caused by its stochastic, dynamic and complex spatial topology. According to the features of MIWNs, such as the randomization of node distribution, complexity of spatial structure, and diversification of loss types, physical layer security technologies and stochastic geometry theory are utilized to study the cooperative secrecy transmission in MIWNs. First, a fundamental system model for MIWNs is proposed based on multi-floor Poisson point process. On this basis, cooperative transmission is introduced into MIWNs and an analysis framework to evaluate the secrecy probability for cooperative transmissions in MIWNs is proposed. Then, based on the theoretical analyses and simulation results, the influences of total floor number, secrecy rate threshold, floor number for target user, and the transmit power allocation on secrecy performance in MIWNs are examined. Finally, the simulations verify that the cooperative transmission can effectively improve the secrecy performance of the MIWNs. -
CHANDRASEKHAR V, ANDREWS J G, and GATHERER A. Femtocell networks: A survey[J]. IEEE Communications Magazine, 2008, 46(9): 59-67. doi: 10.1109/MCOM2008. 4623708. WANG Y, MIAO Z, and JIAO L. Safeguarding the Ultra-dense networks with the aid of physical layer security: A review and a case study[J]. IEEE Access, 2017, 4: 9082-9092. doi: 10.1109/ACCESS.2016.2635698. YAN S, PENG M, CHEN W, et al. Downlink heterogeneous small cell networks with cell associations in k-floor indoor scenarios[C]. IEEE International Conference on Communication Workshop (ICCW), London, UK, 2015: 151-154. WYNER A D. The wire-tap channel[J]. Bell System Technical Journal, 1975, 54(8): 1355-1387. doi: 10.1002/ j.1538-7305.1975.tb02040.x. LIU Y, QIN Z, ELKASHLAN M, et al. Enhancing the physical layer security of non-orthogonal multiple access in large-scale networks[J]. IEEE Transactions on Wireless Communications, 2017, 16(3): 1656-1672. doi: 10.1109/TWC. 2017.2650987. OUYANG N, JIANG X Q, BAI E, et al. Destination assisted jamming and beamforming for improving the security of AF relay systems[J]. IEEE Access, 2017, 5: 4125-4131. doi: 10.1109/ACCESS.2017.2682838. LI B, FEI Z, and CHEN H. Robust artificial noise-aided secure beamforming in wireless-powered non-regenerative relay networks[J]. IEEE Access, 2016, 4: 7921-7929. doi: 10.1109/ACCESS.2016.2627002. GUO H, YANG Z, ZHANG L, et al. Power-constrained secrecy rate maximization for joint relay and jammer selection assisted wireless networks[J]. IEEE Transactions on Communications, 2017, 65(5): 2180-2193. doi: 10.1109/ TCOMM.2017.2651066. XU M, TAO X, YANG F, et al. Enhancing secured coverage with CoMP transmission in heterogeneous cellular networks [J]. IEEE Communications Letters, 2016, 20(11): 2272-2275. doi: 10.1109/LCOMM.2016.2598536. WANG W, TEH K C, and LI K H. Artificial noise aided physical layer security in multi-antenna small-cell networks[J]. IEEE Transactions on Information Forensics Security, 2017, 12(6): 1470-1482. doi: 10.1109/TIFS.2017.2663336. WANG H M, ZHENG T X, YUAN J, et al. Physical layer security in heterogeneous cellular networks[J]. IEEE Transactions on Communications, 2016, 64(3): 1204-1219. doi: 10.1109/TCOMM.2016.2519402. LI N, TAO X, WU H, et al. Large-system analysis of artificial-noise-assisted communication in the multiuser downlink: Ergodic secrecy sum rate and optimal power allocation[J]. IEEE Transactions on Vehicular Technology, 2016, 65(9): 7036-7050. doi: 10.1109/TVT.2015.2493178. PAN Z and ZHU Q. Modeling and analysis of coverage in 3-D cellular networks[J]. IEEE Communications Letters, 2015, 19(5): 831-834. doi: 10.1109/LCOMM.2015.2411599. LEE J, ZHANG X, and BACCELLI F. A 3-D spatial model for in-building wireless networks with correlated shadowing [J]. IEEE Transactions on Wireless Communications, 2016, 15(11): 7778-7793. doi: 10.1109/TWC.2016.2607206. ZHANG Y, XU W, and LI X. Multi-floor PPP model for performance analysis of indoor wireless networks[C]. IEEE International Symposium on Wireless Personal Multimedia Communications (WPMC), Shenzhen, China, 2016: 371-376. OMRI A and HASNA M O. Modelling and performance analysis of 3-D heterogeneous networks with interference management[J]. IEEE Communications Letters, 2017, 21(8): 1787-1790. doi: 10.1109/LCOMM.2017.2695609. SEIDEL S Y and RAPPAPORT T S. 914 MHz path loss prediction models for indoor wireless communications in multifloored buildings[J]. IEEE Transactions on Antennas Propagation, 1992, 40(2): 207-217. doi: 10.1109/8.127405. -
計量
- 文章訪問數(shù): 1240
- HTML全文瀏覽量: 115
- PDF下載量: 111
- 被引次數(shù): 0