基于互信息的熒光素眼底血管造影圖像序列的自動(dòng)配準(zhǔn)方法
doi: 10.11999/JEIT170868
-
1.
湖南大學(xué)電氣與信息工程學(xué)院 ??長(zhǎng)沙 ??410082
-
2.
中南大學(xué)湘雅附屬第二醫(yī)院 ??長(zhǎng)沙 ??410011
A Novel Automatic Registration Method for Fluorescein Fundus Angiography Sequences Based on Mutual Information
-
1.
College of Electrical and Information Engineering, Hunan University, Changsha 410082, China
-
2.
Department of Ophthalmology, the Second Xiangya hospital of Central South University, Changsha 410011, China
-
摘要: 熒光素眼底血管造影技術(shù)(FFA)是眼底疾病診斷的金標(biāo)準(zhǔn),但是造影過(guò)程中病人不可避免地轉(zhuǎn)動(dòng)眼球,造成FFA圖像序列中感興趣區(qū)域(例如視網(wǎng)膜血管分支、新生血管)的位置發(fā)生變化,給后續(xù)的圖像定量分析與病情準(zhǔn)確評(píng)估診斷帶來(lái)困難。針對(duì)上述問(wèn)題,該文提出一種基于互信息的FFA圖像序列配準(zhǔn)方法。首先采用多尺度線性濾波方法分割出圖像中的血管,并利用圖像金字塔對(duì)分割后的圖像進(jìn)行下采樣,然后利用互信息計(jì)算待配準(zhǔn)圖像與參考圖像的相似性,通過(guò)進(jìn)化策略對(duì)配準(zhǔn)參數(shù)進(jìn)行優(yōu)化,獲得互信息最大時(shí)圖像的空間變換矩陣,實(shí)現(xiàn)FFA圖像的配準(zhǔn)。采用上述方法,對(duì)4位患者共計(jì)1039幀F(xiàn)FA圖像進(jìn)行測(cè)試,總體配準(zhǔn)率達(dá)到93%,失敗率僅為1%;與常用的配準(zhǔn)方法相比,所提方法的配準(zhǔn)率、配準(zhǔn)速度和魯棒性等綜合性能良好,為FFA影像的定量分析在未來(lái)的臨床應(yīng)用奠定了基礎(chǔ)。Abstract: Fluorescein Fundus Angiography (FFA) is regarded as the golden diagnostic criteria for fundus diseases. However, dislocation or rotation of the interested images on anatomic landmark (like retinal vascular branches, neovascularization), caused by inevitable eyeball movement, brings about difficulties in subsequent quantitative analysis and progress assessment of the diseases. In order to solve the above problems, a novel method based on mutual information is proposed for automatic registration of FFA image sequence. Firstly, the vessels of image sequence are segmented by multi-scale linear filter and down sampled hereafter by image pyramid. Then, the similarity of sampled images is calculated by mutual information and the evolution strategy is adopted to optimize the registration parameters. Finally, the transformation matrix with maximum mutual information is obtained to register the FFA image. Tests with FFA image sequences of 4 patients (total 1039 frames) show that the overall registration rate of the algorithm reaches 93% and the failure rate is only 1%. Compared with the classical registration methods, the proposed method shows better comprehensive performance in terms of registration rate, computing speed as well as robustness. It lays basic foundations for quantitative analysis on FFA images and potential clinical application.
-
表 1 本文算法的配準(zhǔn)精度測(cè)試結(jié)果
編號(hào) FFA圖像序列的總幀數(shù)n 配準(zhǔn)效果 失敗率(%) 配準(zhǔn)率P(%) Y1類幀數(shù) Y2類幀數(shù) F1類幀數(shù) F2類幀數(shù) 患者1# 218 195 10 12 1 0.4 94 患者2# 219 205 5 9 0 0 96 患者3# 261 232 13 8 8 3.0 94 患者4# 341 299 10 30 2 0.6 91 總計(jì) 1039 931 38 59 11 1.0 93 下載: 導(dǎo)出CSV
表 2 GDB-ICP算法對(duì)4位患者的FFA圖像序列配準(zhǔn)精度
編號(hào) FFA圖像序列的總幀數(shù) 配準(zhǔn)效果 失敗率(%) 配準(zhǔn)率P(%) Y1類幀數(shù) Y2類幀數(shù) F1類幀數(shù) F2類幀數(shù) 患者1# 218 170 2 14 32 15 79 患者2# 219 172 3 6 38 17 80 患者3# 261 244 1 6 10 4 94 患者4# 341 295 13 17 16 6 90 總計(jì) 1039 881 19 43 96 9 87 下載: 導(dǎo)出CSV
表 3 Glocker B算法對(duì)4位患者的FFA圖像序列配準(zhǔn)精度
編號(hào) FFA圖像序列的總幀數(shù) 配準(zhǔn)效果 失敗率(%) 配準(zhǔn)率P(%) Y1類幀數(shù) Y2類幀數(shù) F1類幀數(shù) F2類幀數(shù) 患者1# 218 106 1 1 110 50 49 患者2# 219 82 1 29 107 49 38 患者3# 261 75 3 60 123 47 30 患者4# 341 227 2 18 94 28 67 總計(jì) 1039 490 7 108 434 42 48 下載: 導(dǎo)出CSV
表 4 本文算法、GDB-ICP以及Glocker B算法的運(yùn)行時(shí)間對(duì)比(min)
編號(hào) FFA圖像序列幀數(shù) 本文算法 GDB-ICP Glocker B 患者1# 218 32.45 68.17 13.08 患者2# 219 31.75 62.42 13.33 患者3# 261 37.93 101.13 15.32 患者4# 341 50.35 125.77 20.00 下載: 導(dǎo)出CSV
-
DREO J, NUNES J C, and SIARRY P. Robust rigid registration of retinal angiograms through optimization[J]. Computerized Medical Imaging & Graphics, 2006, 30(8): 453-463. DOI: 10.1016/j.compmedi mag.2006.07.004. LAAKSONEN L, CLARIDGE E, F?LT P, et al. Comparison of image registration methods for composing spectral retinal images[J]. Biomedical Signal Processing & Control, 2017, 36: 234-245. DOI: 10.1016/j.bspc.2017.03.003. COPELAND A, MANGOUBI R, DESAI M, et al. Enhancing the surgeons reality: Smart visualization of bolus time of arrival and blood flow anomalies from time lapse series for safety and speed of cerebrovascular surgery[C]. IEEE Applied Imagery Pattern Recognition Workshop, Washington, DC, USA, 2009: 1–4. GHASSABI Z, SHANBEHZADEH J, and MOHAMMADZADEH A. A structure-based region detector for high-resolution retinal fundus image registration[J]. Biomedical Signal Processing & Control, 2016, 23: 52-61.DOI: 10.1016/j.bspc.2015.08.005 PEREZROVIRA A, CABIDO R, TRUCCO E, et al. RERBEE: Robust efficient registration via bifurcations and elongated elements applied to retinal fluorescein angiogram sequences[J]. IEEE Transactions on Medical Imaging, 2012, 31(1): 140-150. DOI: 10.1109/TMI.2011.2167517. TSAI C L, LI Chunyi, YANG Gehua, et al. The edge-driven dual-bootstrap iterative closest point algorithm for registration of multimodal fluorescein angiogram sequence[J]. IEEE Transactions on Medical Imaging, 2010, 29(3): 636-649. DOI: 10.1109/TMI.2009.2030324. 汪立, 蔣念平. 基于改進(jìn)Harris角點(diǎn)檢測(cè)的視網(wǎng)膜圖像配準(zhǔn)[J]. 電子科技, 2017, 30(2): 119–122. DOI: 10.16180/j.cnki.issn1007-7820.2017.02.031.WANG Li and JIANG Nianping. Retinal image registration based on improved Harris corner detection[J]. Electronic Science and Technology, 2017, 30(2): 119–122. DOI: 10.16180/j.cnki.iss n1007-7820.2017.02.031. YAVUZ Z and K?SE C. Retinal fundus image registration using bifurcation and crossover points[C]. Signal Processing and Communication Application Conference, Zonguldak, Turkey, 2016: 1485–1488. PALRAJ P and VENNILA I. Retinal fundus image registration via blood vessel extraction using binary particle swarm optimization[J]. Journal of Medical Imaging & Health Informatics, 2016, 6(2): 328-337. DOI: 10.1166/jmihi.2016.1701 SAHA S K, DI X, FROST S, et al. A two-step approach for longitudinal registration of retinal images[J]. Journal of Medical Systems, 2016, 40: 277. DOI: 10.1007/s10916-016-0640-0. CAN A, STEWART C V, TANENBAUM H L, et al. A Feature-based, robust, hierarchical algorithm for registering pairs of images of the curved human retina[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2002, 24(3): 347-364. DOI: 10.1109/34.990136. 李英杰, 張俊舉, 常本康, 等. 電子與信息學(xué)報(bào), 2016. 38(1): 8-14. DOI: 10.11999/JEIT150479.LI Yingjie, ZHANG Junju, CHANG Benkang, et al. A multi - band infrared image joint registration and fusion method[J]. Journal of Electronics & Information Technology, 2016. 38(1): 8-14. DOI: 10.11999/JEIT150479. HENEGHAN C, MAGUIRE P, RYAN N, et al. Retinal image registration using control points[C]. Proceedings IEEE International Symposium on Biomedical Imaging, Washington, DC, USA, 2002: 349–352. doi: 10.1109/ISBI. 2002.1029265. 劉妍, 余淮, 楊文, 等. 利用SAR-FAST角點(diǎn)檢測(cè)的合成孔徑雷達(dá)圖像配準(zhǔn)方法[J]. 電子與信息學(xué)報(bào), 2017, 39(2): 430–436. DOI: 10.11999/JEIT160386.LIU Yan, YU Huai, YANG Wen, et al. Synthetic aperture radar image registration method using SAR - FAST corner detection [J]. Journal of Electronics & Information Technology, 2017, 39(2): 430–436. DOI: 10.11999/JEIT160386. LALIBERTé F, GAGNON L, and SHENG Y. Registration and fusion of retinal images--an evaluation study[J]. IEEE Transactions on Med Imaging, 2003, 22(5): 661-673. DOI: 10.1109/TMI.2003.812263. 任克強(qiáng), 胡夢(mèng)云. 基于改進(jìn)SURF算子的彩色圖像配準(zhǔn)算法[J]. 電子測(cè)量與儀器學(xué)報(bào), 2016, 30(5): 748-756. DOI: 10.13382/j.jemi.2016.05.011.REN Keqiang and HU Mengyun. Color image registration algorithm based on improved SURF operator[J]. Journal of Electronic Measurement and Instrument, 2016, 30(5): 748-756. DOI: 10.13382/j.jemi.2016.05.011. CHEN Jian, TIAN Jie, LEE N, et al. A partial intensity invariant feature descriptor for multimodal retinal image registration[J]. IEEE Transactions on Biomedical Engineering, 2010, 57(7): 1707-1718. DOI: 10.1109/TBME.2010.2042169. WANG Guang, WANG Zhicheng, CHEN Yufei, et al. Robust point matching method for multimodal retinal image registration[J]. Biomedical Signal Processing & Control, 2015, 19: 68-76. DOI: 10.1016/j.bspc.2015.03.004. YANG G, STEWART C V, SOFKA M, et al. Registration of challenging image pairs: initialization, estimation, and decision[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2007, 29(11): 1973-1989. DOI: 10.1109/TPAMI.2007.1116. NUNES J C and BOUAOUNE Y. A multiscale elastic registration scheme for retinal angiograms[J]. Computer Vision & Image Understanding, 2004, 95(2): 129-149. DOI: 10.1016/j.cviu.2004.03.007. NGUYEN U T V, BHUIYAN A, PARK L A F, et al. An effective retinal blood vessel segmentation method using multi-scale line detection[J]. Pattern Recognition, 2013, 46(3): 703-715. DOI: 10.1016/j.patcog.2012.08.009. STYNER M, BRECHBüHLER C, SZCKELY G, et al. Parametric estimate of intensity inhomogeneities applied to MRI[J]. IEEE Transactions on Medical Imaging, 2000, 19(3): 153-165. DOI: 10.1109/42.845174. GLOCKER B, KOMODAKIS N, PARAGIOS N, et al. Inter and intra-modal deformable registration: Continuous deformations meet efficient optimal linear programming[C]. IPMI'07 Processings of the 20th International Conference on Information Processing in Medical Imaging, Kerkrade, The Netherlands, 2007: 408–420. -