一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于互信息的熒光素眼底血管造影圖像序列的自動(dòng)配準(zhǔn)方法

劉小燕 王皓浩 孫剛 張譜 劉敏 高玲

劉小燕, 王皓浩, 孫剛, 張譜, 劉敏, 高玲. 基于互信息的熒光素眼底血管造影圖像序列的自動(dòng)配準(zhǔn)方法[J]. 電子與信息學(xué)報(bào), 2018, 40(8): 1919-1926. doi: 10.11999/JEIT170868
引用本文: 劉小燕, 王皓浩, 孫剛, 張譜, 劉敏, 高玲. 基于互信息的熒光素眼底血管造影圖像序列的自動(dòng)配準(zhǔn)方法[J]. 電子與信息學(xué)報(bào), 2018, 40(8): 1919-1926. doi: 10.11999/JEIT170868
Xiaoyan LIU, Haohao WANG, Gang SUN, Pu ZHANG, Min LIU, Ling GAO. A Novel Automatic Registration Method for Fluorescein Fundus Angiography Sequences Based on Mutual Information[J]. Journal of Electronics & Information Technology, 2018, 40(8): 1919-1926. doi: 10.11999/JEIT170868
Citation: Xiaoyan LIU, Haohao WANG, Gang SUN, Pu ZHANG, Min LIU, Ling GAO. A Novel Automatic Registration Method for Fluorescein Fundus Angiography Sequences Based on Mutual Information[J]. Journal of Electronics & Information Technology, 2018, 40(8): 1919-1926. doi: 10.11999/JEIT170868

基于互信息的熒光素眼底血管造影圖像序列的自動(dòng)配準(zhǔn)方法

doi: 10.11999/JEIT170868
詳細(xì)信息
    作者簡(jiǎn)介:

    劉小燕:女,1973年生,教授,博士生導(dǎo)師,研究方向?yàn)閳D像處理技術(shù)及其應(yīng)用、智能建模與控制

    王皓浩:男,1994年生,碩士生,研究方向?yàn)獒t(yī)學(xué)圖像處理技術(shù)

    孫剛:男,1992年生,博士生,研究方向?yàn)獒t(yī)學(xué)圖像處理技術(shù)

    張譜:男,1985年生,博士生,研究方向?yàn)橐暰W(wǎng)膜、脈絡(luò)膜及玻璃體相關(guān)疾病

    劉敏:男,1981年生,副教授,博士生導(dǎo)師,研究方向?yàn)橛?jì)算機(jī)視覺(jué)、模式識(shí)別以及機(jī)器學(xué)習(xí)

    高玲:女,1968年生,主任醫(yī)師,研究方向?yàn)橐暰W(wǎng)膜、脈絡(luò)膜及玻璃體相關(guān)疾病

    通訊作者:

    劉小燕 ? xiaoyan.liu@hnu.edu.cn

  • 中圖分類號(hào): TP391; R445

A Novel Automatic Registration Method for Fluorescein Fundus Angiography Sequences Based on Mutual Information

  • 摘要: 熒光素眼底血管造影技術(shù)(FFA)是眼底疾病診斷的金標(biāo)準(zhǔn),但是造影過(guò)程中病人不可避免地轉(zhuǎn)動(dòng)眼球,造成FFA圖像序列中感興趣區(qū)域(例如視網(wǎng)膜血管分支、新生血管)的位置發(fā)生變化,給后續(xù)的圖像定量分析與病情準(zhǔn)確評(píng)估診斷帶來(lái)困難。針對(duì)上述問(wèn)題,該文提出一種基于互信息的FFA圖像序列配準(zhǔn)方法。首先采用多尺度線性濾波方法分割出圖像中的血管,并利用圖像金字塔對(duì)分割后的圖像進(jìn)行下采樣,然后利用互信息計(jì)算待配準(zhǔn)圖像與參考圖像的相似性,通過(guò)進(jìn)化策略對(duì)配準(zhǔn)參數(shù)進(jìn)行優(yōu)化,獲得互信息最大時(shí)圖像的空間變換矩陣,實(shí)現(xiàn)FFA圖像的配準(zhǔn)。采用上述方法,對(duì)4位患者共計(jì)1039幀F(xiàn)FA圖像進(jìn)行測(cè)試,總體配準(zhǔn)率達(dá)到93%,失敗率僅為1%;與常用的配準(zhǔn)方法相比,所提方法的配準(zhǔn)率、配準(zhǔn)速度和魯棒性等綜合性能良好,為FFA影像的定量分析在未來(lái)的臨床應(yīng)用奠定了基礎(chǔ)。
  • 圖  1  基于互信息的FFA圖像序列配準(zhǔn)方法流程圖

    圖  2  線性濾波器示意圖

    圖  3  FFA序列圖像分割示意圖

    圖  4  基于互信息的變換矩陣優(yōu)化過(guò)程

    圖  5  患者1#FFA圖像序列配準(zhǔn)過(guò)程的參考圖像、待配準(zhǔn)圖像以及配準(zhǔn)前后的棋盤(pán)圖

    圖  6  配準(zhǔn)失敗的圖像示例

    圖  7  本文算法、GDB-ICP及Glocker B算法對(duì)完全充盈期FFA圖像的配準(zhǔn)棋盤(pán)圖

    圖  8  本文算法、GDB-ICP及Glocker B算法對(duì)靜脈開(kāi)始充盈期FFA圖像的配準(zhǔn)棋盤(pán)圖

    表  1  本文算法的配準(zhǔn)精度測(cè)試結(jié)果

    編號(hào) FFA圖像序列的總幀數(shù)n 配準(zhǔn)效果 失敗率(%) 配準(zhǔn)率P(%)
    Y1類幀數(shù) Y2類幀數(shù) F1類幀數(shù) F2類幀數(shù)
    患者1# 218 195 10 12 1 0.4 94
    患者2# 219 205 5 9 0 0 96
    患者3# 261 232 13 8 8 3.0 94
    患者4# 341 299 10 30 2 0.6 91
    總計(jì) 1039 931 38 59 11 1.0 93
    下載: 導(dǎo)出CSV

    表  2  GDB-ICP算法對(duì)4位患者的FFA圖像序列配準(zhǔn)精度

    編號(hào) FFA圖像序列的總幀數(shù) 配準(zhǔn)效果 失敗率(%) 配準(zhǔn)率P(%)
    Y1類幀數(shù) Y2類幀數(shù) F1類幀數(shù) F2類幀數(shù)
    患者1# 218 170 2 14 32 15 79
    患者2# 219 172 3 6 38 17 80
    患者3# 261 244 1 6 10 4 94
    患者4# 341 295 13 17 16 6 90
    總計(jì) 1039 881 19 43 96 9 87
    下載: 導(dǎo)出CSV

    表  3  Glocker B算法對(duì)4位患者的FFA圖像序列配準(zhǔn)精度

    編號(hào) FFA圖像序列的總幀數(shù) 配準(zhǔn)效果 失敗率(%) 配準(zhǔn)率P(%)
    Y1類幀數(shù) Y2類幀數(shù) F1類幀數(shù) F2類幀數(shù)
    患者1# 218 106 1 1 110 50 49
    患者2# 219 82 1 29 107 49 38
    患者3# 261 75 3 60 123 47 30
    患者4# 341 227 2 18 94 28 67
    總計(jì) 1039 490 7 108 434 42 48
    下載: 導(dǎo)出CSV

    表  4  本文算法、GDB-ICP以及Glocker B算法的運(yùn)行時(shí)間對(duì)比(min)

    編號(hào) FFA圖像序列幀數(shù) 本文算法 GDB-ICP Glocker B
    患者1# 218 32.45 68.17 13.08
    患者2# 219 31.75 62.42 13.33
    患者3# 261 37.93 101.13 15.32
    患者4# 341 50.35 125.77 20.00
    下載: 導(dǎo)出CSV
  • DREO J, NUNES J C, and SIARRY P. Robust rigid registration of retinal angiograms through optimization[J]. Computerized Medical Imaging & Graphics, 2006, 30(8): 453-463. DOI: 10.1016/j.compmedi mag.2006.07.004.
    LAAKSONEN L, CLARIDGE E, F?LT P, et al. Comparison of image registration methods for composing spectral retinal images[J]. Biomedical Signal Processing & Control, 2017, 36: 234-245. DOI: 10.1016/j.bspc.2017.03.003.
    COPELAND A, MANGOUBI R, DESAI M, et al. Enhancing the surgeons reality: Smart visualization of bolus time of arrival and blood flow anomalies from time lapse series for safety and speed of cerebrovascular surgery[C]. IEEE Applied Imagery Pattern Recognition Workshop, Washington, DC, USA, 2009: 1–4.
    GHASSABI Z, SHANBEHZADEH J, and MOHAMMADZADEH A. A structure-based region detector for high-resolution retinal fundus image registration[J]. Biomedical Signal Processing & Control, 2016, 23: 52-61.DOI: 10.1016/j.bspc.2015.08.005
    PEREZROVIRA A, CABIDO R, TRUCCO E, et al. RERBEE: Robust efficient registration via bifurcations and elongated elements applied to retinal fluorescein angiogram sequences[J]. IEEE Transactions on Medical Imaging, 2012, 31(1): 140-150. DOI: 10.1109/TMI.2011.2167517.
    TSAI C L, LI Chunyi, YANG Gehua, et al. The edge-driven dual-bootstrap iterative closest point algorithm for registration of multimodal fluorescein angiogram sequence[J]. IEEE Transactions on Medical Imaging, 2010, 29(3): 636-649. DOI: 10.1109/TMI.2009.2030324.
    汪立, 蔣念平. 基于改進(jìn)Harris角點(diǎn)檢測(cè)的視網(wǎng)膜圖像配準(zhǔn)[J]. 電子科技, 2017, 30(2): 119–122. DOI: 10.16180/j.cnki.issn1007-7820.2017.02.031.

    WANG Li and JIANG Nianping. Retinal image registration based on improved Harris corner detection[J]. Electronic Science and Technology, 2017, 30(2): 119–122. DOI: 10.16180/j.cnki.iss n1007-7820.2017.02.031.
    YAVUZ Z and K?SE C. Retinal fundus image registration using bifurcation and crossover points[C]. Signal Processing and Communication Application Conference, Zonguldak, Turkey, 2016: 1485–1488.
    PALRAJ P and VENNILA I. Retinal fundus image registration via blood vessel extraction using binary particle swarm optimization[J]. Journal of Medical Imaging & Health Informatics, 2016, 6(2): 328-337. DOI: 10.1166/jmihi.2016.1701
    SAHA S K, DI X, FROST S, et al. A two-step approach for longitudinal registration of retinal images[J]. Journal of Medical Systems, 2016, 40: 277. DOI: 10.1007/s10916-016-0640-0.
    CAN A, STEWART C V, TANENBAUM H L, et al. A Feature-based, robust, hierarchical algorithm for registering pairs of images of the curved human retina[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2002, 24(3): 347-364. DOI: 10.1109/34.990136.
    李英杰, 張俊舉, 常本康, 等. 電子與信息學(xué)報(bào), 2016. 38(1): 8-14. DOI: 10.11999/JEIT150479.

    LI Yingjie, ZHANG Junju, CHANG Benkang, et al. A multi - band infrared image joint registration and fusion method[J]. Journal of Electronics & Information Technology, 2016. 38(1): 8-14. DOI: 10.11999/JEIT150479.
    HENEGHAN C, MAGUIRE P, RYAN N, et al. Retinal image registration using control points[C]. Proceedings IEEE International Symposium on Biomedical Imaging, Washington, DC, USA, 2002: 349–352. doi: 10.1109/ISBI. 2002.1029265.
    劉妍, 余淮, 楊文, 等. 利用SAR-FAST角點(diǎn)檢測(cè)的合成孔徑雷達(dá)圖像配準(zhǔn)方法[J]. 電子與信息學(xué)報(bào), 2017, 39(2): 430–436. DOI: 10.11999/JEIT160386.

    LIU Yan, YU Huai, YANG Wen, et al. Synthetic aperture radar image registration method using SAR - FAST corner detection [J]. Journal of Electronics & Information Technology, 2017, 39(2): 430–436. DOI: 10.11999/JEIT160386.
    LALIBERTé F, GAGNON L, and SHENG Y. Registration and fusion of retinal images--an evaluation study[J]. IEEE Transactions on Med Imaging, 2003, 22(5): 661-673. DOI: 10.1109/TMI.2003.812263.
    任克強(qiáng), 胡夢(mèng)云. 基于改進(jìn)SURF算子的彩色圖像配準(zhǔn)算法[J]. 電子測(cè)量與儀器學(xué)報(bào), 2016, 30(5): 748-756. DOI: 10.13382/j.jemi.2016.05.011.

    REN Keqiang and HU Mengyun. Color image registration algorithm based on improved SURF operator[J]. Journal of Electronic Measurement and Instrument, 2016, 30(5): 748-756. DOI: 10.13382/j.jemi.2016.05.011.
    CHEN Jian, TIAN Jie, LEE N, et al. A partial intensity invariant feature descriptor for multimodal retinal image registration[J]. IEEE Transactions on Biomedical Engineering, 2010, 57(7): 1707-1718. DOI: 10.1109/TBME.2010.2042169.
    WANG Guang, WANG Zhicheng, CHEN Yufei, et al. Robust point matching method for multimodal retinal image registration[J]. Biomedical Signal Processing & Control, 2015, 19: 68-76. DOI: 10.1016/j.bspc.2015.03.004.
    YANG G, STEWART C V, SOFKA M, et al. Registration of challenging image pairs: initialization, estimation, and decision[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2007, 29(11): 1973-1989. DOI: 10.1109/TPAMI.2007.1116.
    NUNES J C and BOUAOUNE Y. A multiscale elastic registration scheme for retinal angiograms[J]. Computer Vision & Image Understanding, 2004, 95(2): 129-149. DOI: 10.1016/j.cviu.2004.03.007.
    NGUYEN U T V, BHUIYAN A, PARK L A F, et al. An effective retinal blood vessel segmentation method using multi-scale line detection[J]. Pattern Recognition, 2013, 46(3): 703-715. DOI: 10.1016/j.patcog.2012.08.009.
    STYNER M, BRECHBüHLER C, SZCKELY G, et al. Parametric estimate of intensity inhomogeneities applied to MRI[J]. IEEE Transactions on Medical Imaging, 2000, 19(3): 153-165. DOI: 10.1109/42.845174.
    GLOCKER B, KOMODAKIS N, PARAGIOS N, et al. Inter and intra-modal deformable registration: Continuous deformations meet efficient optimal linear programming[C]. IPMI'07 Processings of the 20th International Conference on Information Processing in Medical Imaging, Kerkrade, The Netherlands, 2007: 408–420.
  • 加載中
圖(8) / 表(4)
計(jì)量
  • 文章訪問(wèn)數(shù):  1971
  • HTML全文瀏覽量:  886
  • PDF下載量:  70
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2017-09-14
  • 修回日期:  2018-05-09
  • 網(wǎng)絡(luò)出版日期:  2018-06-07
  • 刊出日期:  2018-08-01

目錄

    /

    返回文章
    返回