抗運(yùn)動干擾的人臉視頻心率估計
doi: 10.11999/JEIT170824
基金項(xiàng)目:
合肥工業(yè)大學(xué)應(yīng)用科技成果培育計劃資助項(xiàng)目(JZ2016YYPY0051)
Heart Rate Estimation from Face Videos Against Motion Interference
Funds:
Training Programme Foundation for Application of Scientific and Technological Achievements of Hefei University of Technology (JZ2016YYPY0051)
-
摘要: 該文針對現(xiàn)有的人臉視頻心率檢測方法在現(xiàn)實(shí)情景中受運(yùn)動干擾難以準(zhǔn)確估計心率的問題,提出一種抑制運(yùn)動干擾的非接觸式心率估計新方法。首先利用判別響應(yīng)圖擬合與KLT跟蹤算法消除人臉的剛性運(yùn)動干擾;然后使用對運(yùn)動魯棒的色度特征進(jìn)行兩步心率估計,并引入空間梯度因子調(diào)控空域和頻域的權(quán)重,抑制非剛性運(yùn)動的干擾;最終得到人臉不同區(qū)域融合的平均心率數(shù)值和信號波形圖,實(shí)現(xiàn)心率的精確估計。實(shí)驗(yàn)結(jié)果表明:所提方法相比其它的基于人臉視頻的心率估計方法優(yōu)勢明顯,提升了信號波形圖和真實(shí)脈搏波形的一致性,進(jìn)一步提高了心率估計的精度和魯棒性。Abstract: A novel non-contact heart rate estimation method is proposed to deal with the issue of heart rate measurement from face videos under motion interference in realistic situations, it is hard to estimate heart rate accurately using existing methods. Firstly, the discriminative response map fitting method and KLT tracking algorithm are used to eliminate the influence of face rigid motion. Then the chrominance features are selected to estimate heart rate with two steps because of the robustness to facial movements. The frequency and spatial domain weights are assigned through spatial gradient to eliminate the influence of non-rigid motion. Finally, the accurate average heart rate value and pulse wave signal waveform can be acquired from different face regions. Compared with three other methods, experimental results indicate that the proposed method enhances the consistency of estimated waveform and ground truth waveform and has obvious superiority in accuracy and robustness of heart rate estimation.
-
KANNEL W B, KANNEL C, PAFFENBERGER R S, et al. Heart rate and cardiovascular mortality: The framingham study[J]. American Heart Journal, 1987, 113(6): 1489-1494. doi: 10.1016/0002-8703(87)90666-1. TEMKO A. Accurate heart rate monitoring during physical exercises using PPG[J]. IEEE Transactions on Biomedical Engineering, 2017, 64(9): 2016-2024. doi: 10.1109/TBME. 2017.2676243. ALLEN J. Photoplethysmography and its application in clinical physiological measurement[J]. Physiological Measurement, 2007, 28(3): 1-39. doi: 10.1088/0967-3334/28/ 3/R01. VERKRUYSSE W, SVAASAND L O, and NELSON J S. Remote plethysmographic imaging using ambient light[J]. Opt Express, 2008, 16(26): 21434-21445. doi: 10.1364/OE.16. 021434. POH M Z, MCDUFF D J, and PICARD R W. Non-contact, automated cardiac pulse measurements using video imaging and blind source separation[J]. Optics Express, 2010, 18(10): 10762-10774. doi: 10.1364/OE.18.010762. POH M Z, MCDUFF D J, and PICARD R W. Advancements in noncontact, multiparameter physiological measurements using a webcam[J]. IEEE Transactions on Biomedical Engineering, 2011, 58(1): 7-11. doi: 10.1109/ TBME.2010.2086456. LI X, CHEN J, ZHAO G, et al. Remote heart rate measurement from face videos under realistic situations[C]. IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 4264-4271. doi: 10.1109/CVPR.2014.543. CHWYL B, CHUNG A G, AMELARD R, et al. SAPPHIRE: Stochastically acquired photoplethysmogram for heart rate inference in realistic environments[C]. IEEE International Conference on Image Processing, Phoenix, USA, 2016: 1230-1234. doi: 10.1109/ICIP.2016.7532554. TULYAKOV S, ALAMEDA-PINEDA X, RICCI E, et al. Self-adaptive matrix completion for heart rate estimation from face videos under realistic conditions[C]. IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 2396-2404. doi: 10.1109/CVPR.2016. 263. CHENG J, CHEN X, XU L, et al. Illumination variation- resistant video-based heart rate measurement using joint blind source separation and ensemble empirical mode decomposition[J]. IEEE Journal of Biomedical and Health Informatics, 2016, 21(5): 1422-1433. doi: 10.1109/JBHI.2016. 2615472. JEONG I C and FINKELSTEIN J. Introducing contactless blood pressure assessment using a high speed video camera[J]. Patient Facing Systems, 2016, 40(4): 77:1-77:10. doi: 10.1007/s10916-016-0439-z. ZHANG C, WU X, ZHANG L, et al. Simultaneous detection of blink and heart rate using multi-channel ICA from smart phone videos[J]. Biomedical Signal Processing and Control, 2017, 33(3): 189-200. doi: 10.1016/j.bspc.2016.11.022. VIOLA P and JONES M. Rapid object detection using a boosted cascade of simple features[C]. IEEE Conference on Computer Vision and Pattern Recognition, Kauai, USA, 2001: 511-518. doi: 10.1109/CVPR.2001.990517. ASTHANA A, ZAFEIRIOU S, CHENG S, et al. Robust discriminative response map fitting with constrained local models[C]. IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 3444-3451. doi: 10.1109/CVPR.2013.442. TOMASI C and KANADE T. Detection and tracking of point features[J]. Technical Report, 1991, 91(21): 9795-9802. FISCHLER M A and BOLLES R C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24(6): 381-395. doi: 10.1145/358669.358692. HAAN G D and JEANNE V. Robust pulse rate from chrominance-based rPPG[J]. IEEE Transactions on Biomedical Engineering, 2013, 60(10): 2878-2886. doi: 10.1109/TBME.2013.2266196. BRENNAN D. Linear diversity combining techniques[J]. Proceedings of the IEEE, 2003, 91(2): 331-356. doi: 10.1109/ JRPROC.2002.808163. -
計量
- 文章訪問數(shù): 2157
- HTML全文瀏覽量: 438
- PDF下載量: 190
- 被引次數(shù): 0